"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import Video, HTML, YouTubeVideo\n",
"width=600\n",
"height=400\n",
"YouTubeVideo(\"eDGtFRj4xXc\", width=width, height=height)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Spherical collapse of a top hat perturbation\n",
"\n",
"The collapse of these perturbations looks quite complicated. Therefore let us first study the collapse of a simple spherical tophat perturbation. Let us assume that we are in a flat matter only cosmological model. Let there be a spherical top hat perturbation with radius $R_0$ in the density field centered at the origin. The density within this perturbation is given by $\\rho$ such that $\\rho/\\rho_{\\rm crit} = \\rho/\\bar\\rho = \\Omega_{\\rm m}>1$. We would like to understand the behaviour of this density perturbation with time.\n",
"\n",
"Because of the spherical symmetry, the density perturbation inside $R_0$ will not be affected by any mass which is outside $R_0$ and thus will evolve independently as a separate Universe. The radius $R_0$ of this perturbation will change proportional to the scale factor in this part of the Universe. The scale factor dependence on time is given by the Friedmann equation,\n",
"\n",
"\\begin{eqnarray}\n",
"\\frac{1}{a}\\frac{da}{dt} = H_0 \\left[ \\Omega_{\\rm m} a^{-3} + (1 - \\Omega_{\\rm m}) a^{-2} \\right]^{1/2}\n",
"\\end{eqnarray}\n",
"\n",
"We have solved this equation before using a code. We saw that the Universe like this reaches a finite maximum scale factor and then the scale factor starts to decrease once again. It turns out that there is actually a parametric solution for this case.\n",
"\n",
"If you change variable such that $a=A(1-\\cos \\theta)$ where $2 A=\\Omega_{\\rm m}/(\\Omega_{\\rm m}-1)$. Then substitute in the left hand side of the equation, we will get that \n",
"\n",
"\\begin{eqnarray}\n",
"\\sin^{2} \\left(\\frac{\\theta}{2}\\right) \\frac{d\\theta}{dt} = H_0\\frac{\\left(\\Omega_{\\rm m}-1\\right)^{3/2}}{\\Omega_{\\rm m}} \n",
"\\end{eqnarray}\n",
"\n",
"\n",
" \n",
"Exercise:\n",
"\n",
"- Show that the above equation can be indeed obtained after substitution of $a=A(1-\\cos \\theta)$ in the Friedmann equation given above.\n",
"
\n",
"\n",
"We can get an expression for $t$ in terms of $\\theta$, by integrating the above equation, and expressing $\\sin^2 \\theta/2$ in terms of $\\cos \\theta$. We obtain $t = B (\\theta - \\sin \\theta)$ with $2 B= H_{0}^{-1}\\Omega_{\\rm m}/(\\Omega_{\\rm m}-1)^{3/2}$. Thus the parametric solution for the scale factor is given in terms of $\\theta$ as\n",
"\n",
"\\begin{eqnarray}\n",
"a = A (1-\\cos\\theta)\\\\\n",
"t = B (\\theta - \\sin\\theta)\n",
"\\end{eqnarray}\n",
"\n",
"The maximum is reached when $\\theta=\\pi$, when $a=2A$, $t=B\\pi$, $R=2 R_0 A$, while $\\theta=2\\pi$ corresponds to $a=0$ and $t=2B\\pi$ when the perturbation collapses and reaches a singularity.\n",
"\n",
"One can use perturbation theory in the very initial stages by perturbing around $\\theta \\rightarrow 0$. This allows to work out how the density within the perturbation changes as a function of time. This linear perturbation theory estimate shows that $\\delta \\propto a$ in the early part of the evolution (we had worked this out before). We can then ask what would linear theory predict for the overdensity of the perturbation when it collapses in reality. This value of the overdensity predicted from linear theory is called the critical density threshold for collapse. This value of the critical density threshold for collapse based on linear theory turns out to be equal to 1.686."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Let us consider the leading order expansion of the above formulae in terms of $\\theta$. Then\n",
"\n",
"\\begin{eqnarray}\n",
"a \\approx A \\left( \\frac{\\theta^2}{2} - \\frac{\\theta^4}{24} \\right) \\\\\n",
"t \\approx B \\left( \\frac{\\theta^3}{6} - \\frac{\\theta^5}{120} \\right)\n",
"\\end{eqnarray}\n",
"\n",
"If we consider just the first order then we obtain\n",
"\n",
"\n",
"\\begin{eqnarray}\n",
"a &\\approx& A \\frac{\\theta^2}{2}\\\\\n",
"t &\\approx& B \\frac{\\theta^3}{6} \\\\\n",
"a &\\approx& \\frac{A}{2} \\left( \\frac{6t}{B} \\right)^{2/3}\n",
"\\end{eqnarray}\n",
"\n",
"We can iteratively solve for the next order by considering the $t(\\theta)$ expression and noting\n",
"\\begin{eqnarray}\n",
"t &\\approx& B \\frac{\\theta^3}{6} \\left( 1 - \\frac{\\theta^2}{20} \\right) \\\\\n",
"&\\approx& B \\frac{\\theta^3}{6} \\left( 1 - \\frac{1}{20}\\left(\\frac{6t}{B}\\right)^{2/3} \\right)\\\\\n",
"\\theta^3 &\\approx& \\frac{6t}{B}\\left( 1 + \\frac{1}{20}\\left(\\frac{6t}{B}\\right)^{2/3} \\right)\\\\\n",
"\\theta &\\approx& \\left( \\frac{6t}{B} \\right)^{1/3} \\left( 1 + \\frac{1}{60}\\left(\\frac{6t}{B}\\right)^{2/3} \\right)\n",
"\\end{eqnarray}\n",
"\n",
"Similarly for $a(t)$, we obtain\n",
"\\begin{eqnarray}\n",
"a &\\approx& \\frac{A}{2} \\left( \\theta^2 - \\frac{\\theta^4}{12} \\right)\\\\\n",
"&\\approx& \\frac{A}{2} \\left(\\frac{6t}{B}\\right)^{2/3} \\left( 1 - \\frac{1}{20} \\left(\\frac{6t}{B}\\right)^{2/3} \\right)\n",
"\\end{eqnarray}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The density is given by\n",
"\n",
"\\begin{eqnarray}\n",
"\\rho &=& \\frac{M}{\\frac{4}{3}\\pi R(t)^3} \\\\\n",
"&=& \\frac{M}{\\frac{4}{3}\\pi R_0^3 a(t)^3} \\\\\n",
"&=& \\frac{M}{\\frac{4}{3}\\pi R_0^3}\\frac{8}{A^3}\\left(\\frac{B}{6t}\\right)^2 \\left[ 1 + \\frac{3}{20} \\left(\\frac{6t}{B}\\right)^{2/3} \\right]\\\\\n",
"&=& \\bar \\rho \\left[ 1 + \\frac{3}{20} \\left(\\frac{6t}{B}\\right)^{2/3} \\right]\n",
"\\end{eqnarray}\n",
"\n",
"Therefore the overdensity contrast evolves with time in the initial stages as:\n",
"\n",
"\\begin{eqnarray}\n",
"\\delta &=& \\left[\\frac{3}{20} \\left(\\frac{6t}{B}\\right)^{2/3} \\right] \n",
"\\end{eqnarray}\n",
"\n",
"If we just naively continue this extrapolation of how the overdensity grows, we will of course not be able to predict the overdensity at late times (because we are working in the $\\theta\\rightarrow 0$ limit). After all we know that the overdensity collapses at $t=2B\\pi$, when formally the value of the overdensity becomes infinite. But if we naively extrapolate the linear theory prediction, we obtain that the density perturbation collapses when the linear theory prediction gives a value for the evolved perturbation equal to $\\delta_{\\rm sc} \\approx 1.686$.\n",
"\n",
"\n",
"The perturbation we considered was a spherical top hat perturbation. Perturbations in the Universe are clearly more complicated, since they do not obey spherical symmetry. Thus in reality the collapse does not proceed to a singularity. The various shells of masses start crossing each other and lead to a virialization process for the halo. Using the virial theorem we can show that the virial radius is proportional to $R_{\\rm max}/2$. At this stage we can show that the true overdensity with respect to the background is close to $\\Delta_{\\rm vir} = 18 \\pi^2 \\approx 178$.\n",
"\n",
"We did all these calculations based on the assumption of a background model with only matter and a flat cosmology. These results can be generalized for more complicated models with curvature and dark energy density. In that case, we will get a different growth rate for perturbations in the linear regime (this factor is called the growth rate factor $D(z)$), a slightly different collapse threshold and a different value for the virialization overdensity $\\Delta_{\\rm vir}$. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Formation and statistics of dark matter halos\n",
"\n",
"The fluctuations in the dark matter component at the end of radiation domination have a characteristic power spectrum $P(k)$. We have discussed the statistics of these fluctuations before. These flcutuations grow with time leading to the growth of the power spectrum. For scales with overdensities $\\delta << 1$, the growth factor can be calculated using linear perturbation theory as we did in the last section. Scales with $\\delta \\sim 1$, their fluctuation amplitudes grow non-linearly and these scales can collapse in to bound virialized regions as we saw in the simple spherical collapse model. \n",
"\n",
"Now consider a region in a simulation box, evolve its densities with the linear growth factor and compute the average of the overdensity field around it within a sphere of radius $R$. We can obtain a distribution of such overdensities if you consider different locations of the simulation box. Given that the initial density field is a Gaussian, this smoothed density field will also be a Gaussian with a certain variance. Let us try to compute this variance.\n",
"\n",
"\\begin{eqnarray}\n",
"\\delta_{R}(\\vec{x}) = \\int d^3 \\vec{x}' \\delta(\\vec{x}') W_{R}(\\vec{x}-\\vec{x}')\n",
"\\end{eqnarray}\n",
"where the window function $W_{R}(\\vec{x}$ can be defined as\n",
"\n",
"\\begin{equation}\n",
"W_R(\\vec{r}) = 0 \\,\\, \\forall |\\vec{r}|\\gt R \n",
"\\end{equation}\n",
"\\begin{equation}\n",
"W_R(\\vec{r}) = \\frac{3}{4\\pi R^3} \\,\\, \\forall |\\vec{r}| \\leq R\n",
"\\end{equation}\n",
"\n",
"The variance of this field is then given by\n",
"\n",
"\\begin{eqnarray}\n",
"\\langle \\delta_R(\\vec{x})^2 \\rangle &=& \\int d^3 \\vec{x'} \\int d^3 \\vec{x''} \\langle \\delta(\\vec{x}')\\delta(\\vec{x}'')\\rangle W_R(\\vec{x}-\\vec{x}') W_R(\\vec{x}-\\vec{x}'') \\\\\n",
"&=& \\int d^3 \\vec{x'} \\int d^3 \\vec{x''} \\xi(\\vec{x}'-\\vec{x}'') W_R(\\vec{x}-\\vec{x}') W_R(\\vec{x}-\\vec{x}'')\n",
"\\end{eqnarray}\n",
"\n",
"This double convolution can be easily evaluated in Fourier space and then transformed back to obtain\n",
"\n",
"\\begin{eqnarray}\n",
"\\sigma_{R}^2 = \\langle \\delta_R(\\vec{x})^2 \\rangle &=& {\\rm FT} \\left[ P(k) W_R(k)^2 \\right]\n",
"\\end{eqnarray}\n",
"\n",
"As $R\\rightarrow \\infty$, the variance goes to zero, but its behaviour with $R$ will depend upon the power spectrum. For the power spectrum in the concordance cosmological model, the power spectrum just decreases with $R$. Now the initial conditions could be evolved with the linear growth rate, and could be smoothed with a large radius $R$ and ask if there is any point which has a density above the critical density at a given redshift. The radius can be shrunk until there are points which have $\\delta_R(\\vec{x})$ greater than the critical density threshold. Those locations will correspond to the particles in the initial density field which lead to the formation of a halo of mass $M$. Continuing the march downwards would allow us to identify the halos starting from initial conditions.\n",
"\n",
"The fraction of mass bound in halos of mass $M$ and above can then be calculated as\n",
"\n",
"\\begin{equation}\n",
"F(>M) = \\int_{\\delta_c}^{\\infty} P(\\delta|\\sigma_{\\rm R}) d\\delta\n",
"\\end{equation}\n",
"\\begin{equation}\n",
"F(>M) = \\frac{1}{2}{\\rm erfc} \\left(\\frac{\\delta_c}{\\sqrt{2}\\sigma_{\\rm R}}\\right)\n",
"\\end{equation}\n",
"\n",
"The number density of halos with mass in the range $[M, M+dM]$ is given by\n",
"\n",
"\\begin{equation}\n",
"\\frac{d}{dM} n(>M) = \\frac{\\bar\\rho}{M}\\frac{d}{dM}F(>M)\n",
"\\end{equation}\n",
"\\begin{equation}\n",
"\\frac{d}{dM} n(>M)\n",
"\\propto \\frac{\\bar\\rho}{M^2} \\exp\\left(-\\frac{\\delta_{\\rm c}^2}{2\\sigma^2}\\right)\\frac{\\delta_c}{\\sigma}\\frac{d\\ln\\sigma}{d\\ln M}\n",
"\\end{equation}\n",
"This particular way to derive the halo mass function was first presented by Press and Schechter in 1974. The mass function they found showed that only half of the mass in the Universe would be bound in halos. So they had added a fudge factor of 2 to the mass function they obtained with these arguments. The factor of 2 is already missing in the first equation of the above argument. This was pointed out by Bond et al. 1992. The solution for the statistical problem corresponding to this problem was first presented by Chandrasekhar some time before (he was not solving the mass function problem). It has to do with regions which are underdense than the critical threshold but are part of bigger overdensities (it is called the cloud-in-cloud problem).\n",
"\n",
"The Press Schechter mass function qualitatively reproduces the halo mass function observed in simulations, you see a power law at the low mass end, and an exponential drop off at the massive end. There have been many advances in understanding the halo mass function theoretically with more quantitative success: in particular the use of ellipsoidal collapse rather than spherical collapse to set the critical threshold for collapse (e.g., Sheth, Mo, Tormen 1999, 2001), stochasticity in the critical threshold (e.g., Corasaniti et al 2011), statistics of peaks (Paranjape et al. 2013). However, these approaches often lead to better functional forms whose free parameters are tuned in order to fit the halo mass function in arbitrary cosmologies. \n",
"\n",
"The mass function appears fairly universal, but there are small deviations and these have been now well characterized with the help of numerical simulations. Fitting functions or interpolation routines that can compute the mass function for a given mass and redshift are available. The following figure from Tinker et al. (2008) shows a comparison between the halo mass function as measured from numerical simulations and the Press Schechter mass function. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAANeCAYAAABdyVC7AAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AAAAtdEVYdENyZWF0aW9uIFRpbWUAV2VkIDE1IEphbiAyMDIwIDA3OjMzOjE5IEFNIElTVDWvdikAACAASURBVHic7N19dNP3fff/p2TJlm3Zlm8x9wJMIIQEkSWBNWkspzehXVPM1W1pu62YpWvP1mvFbGdn7bVutnt27eZ0+xm29rp2j7i6pumaLKZNV0i6IKdpA0laRKAEEoNlsMHGxnxtZFuWZOn3h5CwsC1uAjZYr8c5HED66vv9SvrK/rz0+XzeH1MsFoshIiIiIiIiMgXzTJ+AiIiIiIiI3N4UHEVERERERCQtBUcRERERERFJS8FRRERERERE0lJwFBERERERkbQUHEVERERERCQtBUcRERERERFJS8FRRERERERE0lJwFBERERERkbQUHEVERERERCQtBUcRERERERFJS8FRRERERERE0lJwFBERERERkbQUHEVERERERCQtBUcRERERERFJS8FRRERERERE0lJwFBERERERkbQUHEVERERERCQtBUcRERERERFJS8FRRERERERE0lJwFBERERERkbQUHEVERERERCQtBUcRERERERFJS8FRRERERERE0lJwFBERERERkbQUHEVERERERCQtBUcRERERERFJS8FRRERERERE0lJwFBERERERkbQUHEVERERERCQtBUcRERERERFJS8FRRERERERE0lJwFBERERERkbQUHEVERERERCQtBUcRERERERFJyzLTJyAzxzAMfD7fTJ+GiIiIiMgdz+12z/Qp3FKmWCwWm+mTkJmxZcsWPB7PTJ+GiIiIiMgdb+fOndTV1c30adwyCo4ZzGQy4XQ62bx587Qcb9euXfj9fhoaGqbleB0dHXg8HtxuN9XV1dNyzNbWVrxeL3V1dSxevPiWH28mnmMmvI9NTU3T+tnIhPdxuj8bkBnv43Q/x0x4H6f7swGz/33MhJ9xMP3vYyb8jLuTflc1NTXhdrvZt2/fLTq720BMMhYQc7vd03Y8t9sdm85Lbt++fTEg1tDQMG3HbGhoiAGxffv2TcvxZuI5ZsL7ON2fjUx4H6f7sxGLZcb7ON3PMRPex+n+bMRis/99zISfcbHY9L+PmfAz7k76XTXd78dMUHEcERERERERSUvBUURERERERNJScBQREREREZG0FBxFREREREQkLQVHERERERERSUvBUURERERERNJScBQREREREZG0FBxFREREREQkLctMn4Bkjn379k3r8dxuN7FYbFqPOd1m4jlmwvs4268bmP73sbGxkcbGxmk95nS/j5nwMycT3sfp/mzA7P+Zkwm/q2D638fZft1AZvyuupOox1FERERERETSUnAUERERERGRtBQcRUREREREJC0FRxEREREREUlLxXFERACfz4dhGDidTpxOZ9ptr2fivNPppK6uLu02e/bsAcDr9V7Tvt1uNy6XC4fDcc3nISIiIvJeKDiKyB3JMAx8Pt9VA1RLSws7duzA7/fj9/uvut+GhoarhrempqZrPk+3233V4Lh3714AWltbaW1tveo+m5qa2LdvH263e8ptvF4vNTU1AMkw7HQ6Wbx4ccp24++7WmAWERGRzKXgKCK3lUTAS/QAHjp0CMMwUrbxer3Jf18tQDkcjpTtJ7s/ET7XrFmTdl/jj3mtrqVX8Atf+AK/8zu/w+bNm68aMhOvz/WEvGsJzVcLzH6/H4/HA6S+Zi6X65rPQ0RERO5cCo4icsslQqDP56O+vj7tth6P56o9eoneMZfLddUAdSvWD7uWcHk9qqqqgPjzuln7nux5TxagE7dd7bh+v3/K9+XK8O1wOJLDaUVERGR2UHAUuYkSDf9Mmnvm9Xrxer0MDAykBMSpXC1QJAJMIhxmQq9WImjd6qGik4XDaw2qLpcr2dOa6MHs6OhI/jsRQFtaWgCor6+f9e/b7UABXW5EJv6ukvduun5Xye3LFLvZX8XLHcNkMuF2u69r2J3MfokAkPj7avP9Nm3alAwLCVfOOxzfE1VXV6fGyiyVCJGJobTpQqlhGGzatCk571JzLUVE5E6WCe1qBccMlgkXuEw0vldw/BzCxP+vdLUfEV6vF8MwUoYrilzN+OI9k0kEyOrqatxu900fHiwiInIzZUK7WsExg2XCBS4T1dTUTDrXbfy8waKiomQIVINdbqVr/SKjvr6e5ubmGTxTERGRqWVCu1pzHEXuQF6vd9KGttPp5ODBg2kfW11dTXV1tSpjym0hce1N9gVFYu5ka2sra9asueq+PB6P5t+IiIjcIupxzGCZ8M3IbOD1epPzxg4dOjRhPmFCIgDq/ZRMdOW6lW63OznMVUFSRERutUxoVys4ZrBMuMBngyuHljqdTmpra1m8eLF6DEUuSawz2draOmEotoKkiIjcapnQrlZwzGCZcIHfDhLD7a5cvsDv91/T6+/xeJLbquKkyLVJLBMzVZBsaGigrq5uRs5NRERmn0xoV2uOo8hN1tLSgs/nY2BgIDkXcTLXWnRGjVuR63dlJdYrg6S+gBEREbk+Co4iN1lTU1NKWHS5XGzcuDHZiFWVUpHpd71LeiR6KfV5FRERiVNwFLnJtm7disPh0LqGInewXbt24fF4AKitrWXjxo3U1tbq8ywiIhlLwVHkJtPQUpE738aNG4F4z2NLSwstLS1s27aN2tpaFdkREZGMZJ7pExAREbnd1NbWsnPnTtrb2zl48GDyCyGPx8OWLVtYsmQJS5YsYfv27fj9/hk9VxERkemgqqoZLBOqP4mI3Ew+ny9ZZCexpqrT6aS9vX2Gz0xERGZSJrSrNVRVRETkGrlcLlwuF/X19fj9/mR4FBERme0UHEVERG6A0+mkvr5+pk9DRERkWig4Zjifz0dNTU3abVwuF83NzdN0RnI7aGwyAbByZS0rV2xk5cpabDZVk7xZurt9BIPGlPc7HE4cDuf0ndBtorvbx7FjLfg7WgEwDD+G4U/7mPGvlXNxNU6nG4DKStdtc822tLSwZcsWamtr2bp1Ky6Xa6ZPSUREroPJZJrpU7gtaI5jBrvWD8FsH68tE3l21UxotK9cWUvlnDXYbA5WrqzNyGBzvfx+L3ApEB3fnfz/1ZSVrWT1PU9Oep/LVYfD4ZxyX93dPtra9hCJBCfcFxkbpa/vWNrQWlJSxaq7P4HFYkuGslsRZMe/Nv6OVvx+76TnlQiCV9vPlVaurOWTTz7/Hs/y5ti+fTtNTU0YRvz5OZ1Otm7dSm1trSqziojcAdRmjlNwzGCZMIlX3pvubh++Q7s4dqxlQs9PZaWLlSs2YrM5qKx0ZWwvWUIiaBuGPxkSrwxCVmseY2MhotHIDR+nbvM+nE53sld4uuTmlvDkrz8H3Fhvnt/vjf+5FBKvZLM5cDrdrFyxEafTfd3XkmH48fu9GIaf4OgAzsXVrFxZe137uJUMw6ClpYVdu3bh9XqTtyfWiNQyPiIid7ZMaFcrOGawTLjA5eZJDK88dnz3pEES4oHC6XRjyymKB8vbqOF+MwWDBseOtXDsWAuBoZ5Je/FMmIgx8cfrlQHbubh6yvsmkwhtXm/jlOcWjUYoKama9P6Skiqys+0pt40fOjs0dI7Tna8B0Nd3bNKeSyBlSGgi7KUzPuiOv04SgbGycnqHb3Z3+9izdxuVlS4q56zB5aqbtmP7/X48Hg+7du1KLuXhcDg0lFVE5A6WCe1qBccMlgkXuNw6ibAxPlB2d/um3D4RLGw2BytXbEwJSIley6tJHC/h1KlX6e45RH9/2w0/D0fRYoKjAxNvdzip3bgT4IZ695KB6NLw3kTgu66ANK5naqZ0B9oYiQTozu5nNM9McHRgwhcH7uoG3O5Gurt9Uz4/r7fxcmC8DeYe+nweWnZvSf7f4XDiWrMZp9N91RB8M3m9Xnbt2kVLSwuGYWhpDxGRO1QmtKsVHDNYJlzgMr2uDJKJcHHhwkkGBk5N+bj16+vZ8HgzPp8H36FdyduvVkTmVvvSH1/AZnPg2TWxgFRlpYuK8nsIhQLJXrxkj6FhgO+KEO33Q2tr/O/xfL749tdpoBA6F0DXfBgsvHz7o69ARe917+6GjNiguxKKxwoZWXMX//jAmzhGbCwecOC0VLGk9JdwuMf1Ortc4Jj50JgQDBr4/V72H9gxYfis0+nGtWbztPVEJoayAhq2KiJyB8qEdrWCYwbLhAtcpk8i5Pn93kl7pQAaG2LJypnjJQq+eL2NeFubkrcneuhCoUCyVzE7247ZbEneX1a6AofDicViu6HzdjicU86p62zz0tnmjf/7RCudbV5++0Pf5uQ7e4gFg5i6uwGI9fTEw193N50LoHsOFF+AnBBkRaDkAuSMpu47OwQl/YDdjqlq8mGlVFZilFkJEyIUC3Fm7DSnTZ2EYkEs4ckfUp37OOVZlVM+36FoAKspm2xT9qT3Z5ttlGRX0pXVzYgpyHmzwZHs47RxghFrmO0t7okP8vk4azNorYZjd6fe5bgAK4/BiuOwxD/uDqczHiTXrLl8m3vcvqc5ZCbmSCbmYCau3cT1kajYmsnzeEVEZGqZ0K5WcMxgmXCBy61z7FhLPCxOERIhtSJmZaWLDY+nX9blykquVxsy+Jevb2J1aTWPLaoj3/reQ8Zgv58Th1vo/Pn3ON11gNDYcMr9hQPwoZfgvz/4ng91W4tmmRnKjabcNlpkozCvkodWbSY7z0HlSjdFxU5GjvsIvOmNB2fD4OmSvfSa+igPFhIdDhCwhVL2M6fPQsV5C3M6w1SeGUvePpYFWWMpmxLLtYFt3BcCDgcmu52Y3Y7Jdu1fFGQVOMi9a03KbbkrXOSucJE9zznpYwzDj7e1CZ/Pk3L7TAdJn8+Hz+dTr6SIyG0mE9rVCo4ZLBMucLk5EhVCE8NPJxtCmliuIzFc81avo9c+4GObdy0A+VYH6+bWsq5yI+vmXkNBnnHDQwdfbuHo6b2ciL5Lb8kYYQtELPEewXldUNYH+cOQH80jb+FdmNaswRiJ9zRSVUWhpYTC4kVwRa9hb1d8qOqJU6282ZXawwqQOzIxKAHMr3Bx79KNyf8P9PsZ7PcDYCGLoZ6TAFSudGMvXXz153qFs/79dBzbm/x/dkklMbudC8OdRCJBbEGwB8AyybmlkxWJP6fBQugrg6ANQtlALL6/nCCM5kIw97pPOanIAGs4/qf0fPy9cUycnnpDsgoc5K5wXf73XWuwP+Amd4WL0+d9U1aETVzrlXPWJL/ouJUVhjdt2kRLSwtOp5OGhgYFSBGR20QmtKsVHDNYJlzgt4vE0MxEkJrO4htT2b9/O8eO757y/nRrDibWchy/HMd0FTzp7fLR2rINgNBYkHPmPt61n2WIIQDyixdw/7Jf5bGFm6m0Oek6vIf+n/+I1oHv0ZXdyxe+DsvH1dJpWwYvPBH/d0HIRjg/m2PzB6/5fDasa2DD+sYp7+/q9fH8K9soKXRy79KNjF7sIzQaSN5fXFaFNcee3LZqgZv55VMX0Onq9fH0S1t46O7Nye2qFriv+Xwh3rN69HUPR9/YhT/mZ7AIsmJZLBybz3KjDOe5PHKilnhPIjCafSkEXhKeU8JQgZmwKUJWrh1znp3Bi52Exz2vq7JmE8vPm/w+iwVTkYNYweXqr6GhC1wY7CBigYg1ftua7ko27bGlzBv1bI7/vbgDCgfhl/qdhBZWEorGq8PGXGswVVURCPYxcq6DsYvxLxBGjvuS/75S9jwnuStc2H+pGvsDbnpyjLRLi8Dl8GizOXAurk4WBnqvfD4fO3bswOPxAChAiojcJjKhXa3gmMEy4QK/XfzVXxenLfJiszlwueqw5RS9p+N09xxKhtTEen9T2b9/O3v2bpvy/vG9Jg6HE0fR4mtaYqN/0E//oD/5/4WlrmTvW8LoiDHhthNHdtPb5WP94w2s39A4Yb+GzwtA+8+epfXINybcP2aOh5vIpR7DsBWG81O3md8Jn2qdx4J7PgyLL/XWOZ0ctZ9iwWOfobDESVunl7ZOb9rnOF7VAveUwS3Y7SfY7U85/3TsVS7sVS5slc4pt2k9uJ3nX5n4vuXmOLh3WS0lBam9kA+tqqOkcPL9DexroXXP/+L42NtYL/Uw2kYgZor3GC7KWoJjzgpyV6xh7YpPJnvk0nn+2F9SOpxL/6nL7+9oaIgx35sYgU7GYvE1LHNHrr9XczLZeQ4qlz1MibkMurt5MbuV4azUJUTyhqD8UsGgBafhgTehONFT6XbH51MWXfrsORyMlNsZKbAw8s6hy0Nxr5Dojcy9aw2DFbkYtpHkMOupAmVjQ/pft4bhv+aeSr/fT1NT04QAWVtbi+M2KkAkIpIpMqFdreCYwTLhAr9d+HyeZKPSGOiYMB8wXe/e9Ur0AG54vDnt0g+JIDtZT6Hf708uD9DY2MiJwy3JoNe6bzdZYwZFxQ6KHQ5WPbiZVQ/VJdemC9q8BHNbk/vKsdgxXUztibJELg/TtAfAGs8SlM93cd9Dv0P5cB5vPvevRHo7cRQ7wD9xmY+hPDg7F3rLIJQDF0omPkdrCBwG5ITMWEdjRLMKcRSW4bj7AUJ3OXHOXc/bew38fj9OpzOl1ybxfCBe5dLpdCbv83g8+P1+7io08+iiQiIBg8jQAH1H9tN9Nj6MtdQSYex855Svfzq2Sie2Sidnz3bTlb+Y7HUf5zOf+73k/W8dfZWnd/85mIIsvaucUKyP0+d+zmhoYk/p3Q9upqjEiWEYHP+pl4LAeUqtUPhOJyuPQW4QzBULyKqu5mRWBye6X00+tm0ZdC6M/zvf6mBJUer1tKTIRb7l8pcdNosdzy/+aMI5lOYuIBgJsKhgNcGgQSDYR3hkkBUV72dJ5frk/tfNraUiz0n/KR/dx7wYF/yc6U1970NnOlL+Hz7fTSyUGhTDlnjwHSiKf4nAJKupmGImSg0LH9gbxumPvw4TjCvgM7J8AYH+U4z0nWbkuI+R4xOvSfsDbkqe2ExRTS1ZBfHPVXe3LznU2+1unOQglz3znU0cO9aSMofyar2UVwZIrQcpIjIzMqFdreCYwTLhAr8TeL1e1q93paxPuPNSI3Cty5XS+Pvhnj28uDc+P625ObXQjLsmvmRE3eYGGhsbefmUh5dP76LnaJC9z+zn7AEIB1I/7iZTvEXd0BB/DMSHgv77jo9hCndd0/knegi9Xi81NTXMr4J/+WYDAP0XO3jr3f8kGJ566OeF/4KCfvjcb/w2oV/8nEBbaoPcKIKj99uw5BZwJnvqdSYcwVxs75gZNYYoDjl48BE3seNvE2o/nvb8BwpTl7NIp7wXbKNX3y7BfPdqFj30CQB27PoO+3zHWPu+VfzaF2q4EOzmwmg3vUY3p7tPYLbAPcN2Ks+EmHsqtaBMMAdOLIsvvdFbDr0Vkx/PNjLxtlA2RLOu7XxjoSxKzPk4DHCcC9Gx1E7nYB9mK+QVW4gSmfKxlnC8eJApdmmOaBjMl+rrjORCIB+ilms7D4hXd82KWbAaAUwxsAWnCHdA7nD8i4i1Kz/Fw6s/R6DPT6DPT2/fMUZ7OjjTe5iR2BBj5vgcy7AVYubUfdhGwIULAgHsgXhV3MpX2yjtn/ocAw+7GCnKZiQrxHA0wOnRNgaK4Hwp9M3JInzFJNZEYZ3KOWtYubJ2Qu/inr3bJhSacjicuKsb4vMo03wRlAiQiS98IP4zor6+fuonICIiN00mtKsVHDNYJlzg08UwDHyX1u1zj19SAFiyZAl+vz8lnAE0NjbS1BRfeuLKj+Fkge5qj9myZQt+v5/NmzdTV1fHM8caeeZ4U8o2lQE7FeWrWbXocVaXufnib/4psVFL8jEQX4Li2W/UELPOx15UTrHDQWGJk2WrN5KT68Dn82Evc+F0OlN64dK9Bj6fD8MwWFRRQmH/SX5x8FsYR14l1N9N0UA8ZCRkOauw3uNicCyLaGCUiPE2P6qKhz9TNB5GYmYzUauF7MJSzCVlmHJyyMqzE7gYIDwWwZplwT5uflwkEiHrZC/W4Bi50Shlpy9S2D1McGzousLgaI6JvnITUeKJKFEIprc8fn+id+5mKRyAVUfB5Us9x2AO+FxwdBUMphndbLPYmZtfxaj/OGPBEcjJJWZ3kFNUzKhpGCPYnZz7N9XxCy9l/sJBmN91+f8AozkQKLj25+NbA0bx1PdnX3qOoZz0+zGPXf7bFIOoGcasqdtkReDut+PDYc+XQNHd6zHFwHq2L/7Yc/2YjAGyImNEsiB/aNzw1XG658SvuZyQGcuYmSUXCpkTLOKXfhYDv5+DLji0BvxLUh9nDUHRuP1lFZfRY+lL2cblqsNd3TAhQCaWBvEd2pUyGiERIq+2tqTH42H37t00NzenfEZFROTWyYR2tYJjBsuEC/xGeb1eYGIAmirQJXrbYGKgW7t2LQ6HIyWcQbxxt2vXLpxOJzt37pz0+FeGs2uVmEM4cLGLI75/5+yxfRCKt8r9i+NDPBd0xnvQskOwpCub4nOhq+wVLHYHDpcb+7I1k97vcLmB1Pl8kaEBDJ93Qk8iQHDNSn5Rfo72oni3Tm85jN7Ycow3pCLPSUWeM+W2JUUuVpdW8/LpXQyFL89LPdLnTbuvuflV3F3yMG/3/4SzQ21pty21zacwp5y7Sx5mbn5VMuClE/6Fj+J2g8CJQ/S9erlKq63SicPlxrGmGofLPen8yJHjPrIKHFMuPZEQaPNx/vhPOfPm9xk5/Drm82m624gHsgvjgmDuCOTnllN+1/tYvOFzLLjvoxMek/hy4cphlF6vlyP7f49Iz9uM5dkYLsvj3ZJ+BhMjqaNm7DYHkWiIYGTyIjw2i53C7DJ6zp1jqGeYBdnZLB6IYopEkufbMyc1mFrC8d7MnFHIG4asKNgvxiu35o5MnCdLLB5Ks8YAk4mscIxYFlhyC1ncm8uCo4M43x5hbjdctMd7W/vKLh/TKILe5Q7eXRgkFIuH9g2PN7N+/eQ9g4l1T8fPX3Y4nKxftzU+L3qailKJiEh6mdCuVnDMYJlwgadzZQ9dgsfjYcuWLQBcuHABh8PBi9/eQmHxYvbs3UtPdzdr1qzh0cdqKSxxAtDd3c2ePXuIWJwpgXK67N8TP2bvmUOMjhjJResTrNZ8CijAGoaSQA45bR0T9nGuPN6DNF5ulh2z2YIFCzlWO9bT3ZhHpu6hSudipZ3h7AhdpUG65kPngsshcck5O/k9AfKHwOknvl6f00lszhxwOjFVVrK6zM3qMvcNHftmOTfs58DZFobCBu2Dh5LBcihs0D5wORgvKXIl15XMtzpYUrgmZQ7fexXs9tO9x4NxqHVC0Z0rw729yoXFnhouEo+JDA0kA32gzUckkFrAKRFIU/ZblRr49r/1T/gPv4BxqJUS/yAV40YTx1auZO3n/2/yC4WrGez3s39vEycOtzA6cmkObvkigmV2DpV2csGSOuS52LKQyFgYi9UMpigXRrsn7NNqysE+lksscJGc4TGyxsDohSVrPsC9Kx8BYIX9AZr+919ztq2XtR+JUOIYYvhiN3e5nsScU8nhN16l0hYm2n2U2Fhk4pzJWDxIWsIQy8+ldM4qHlz0Ce4/lgsdHeD1Mnzcx0huvJd6wAEha3z48cmlEM6GJfn38rGH/4LSX/7YlK/PZGtLTtVrKSIi0ysT2tUKjhlstl3gPp8Ph8OR0kPn8/moqanBMAza29tT7qupqcHr9U7oPUyUu1+8eDF1dXVYIn6e/UbNNZ/Hhz+1k1UP1aXdJhH0AEaDAxMqjI5XPt9FdW3zlPcDbN+W2pK1F8xjbsFywmc6oN0/Ya07e5UrGQosdgcj80s4b+pPCUAHunenhKHk+ZyL985cqXDw8jDGwSvmDY7vSVw3t5Yl/UUsefZn5B04Qv4QLG3nciGSjRvhDlxa4Nywn3PD/kl7MW81w+eN/znUOmkAvBaJYOhYU528Pq5X+4AP7/F/ovvH32XZgb5kiDSVVbDsyS9PGjyn0tnmZf/eppQvQebet4Gl79/MW8EDHDjbwrlh/3Wf43jWULzH3TwGQ5fmYI715/Fr634fcxTmMIeunx1mzw934nSC7dIalEWFC8m1ldDT+TZkheLzJa8Ik3lD8c9A2aL7WblyI/c7HqPi6R9BayuhjjZGezsJ2KFjEbz2vniYLDLggz/NixfY2fDr5K5wJYvsjGcYfvYf2IHP50kWubreAOn3+/F6vVrGQ0TkJplt7erJKDhmsNl0gSfmEV75fLxeL5s2bcLlctHc3JwyPC5RSfNa9Hb5kj0gCVf26g1e6ODE4RbWPrp10uUkxrsy6KWzoMrNr35h6vco2O3nnZf/gYHDP2HknUNk919MuT8xlLHs4Y2UPZJ+KY2ptA/4GAobyXB0rRI9hPlWB0sOGrBjB3i9cKl4B04nbN0KtbXxf8tNkQiPkYAx6RDhRNVWmLxH8mZoH/Cx78UvY/3eHhaOKy5rq3Sy4BNbqdxQd03HHR0xOHG4hf17mxjs9wPxL1PWP97AsntrJ/T2TuXsUBuB4V7aTu2j59xb9I2dwyhO/+svdzg+r9Y2CoUDWZSVruBh1+epue+LAHzmD+eSZeum0pxDfnSUPPKYv/T9dHa8Rl7vYEoxn6E8aK+ykBeIMlgQZTg3XrjIKIHyfitzusKYx2CJP97rXnzpI1L08K9Q8onPYn/APSFEBoMG+/dvZ/+BHQSDBjabg/Xrtl61eivER1x4PJ7kUPkrh+WLiMj1mU3t6qkoOGawO+0C9/l8bNq0Cb/fz759+1IaOo2NjRw6dIiNGzfeEd+gXxk6y+e7yMmduhE9vhcpEjDo+8luDJ83uUZggsXuSAYBx5pqyh6pTbsm4C1nGNDSEg+Ml+a24XDEexY3b74jexbl+hzp8/L0q18g5+BRlp4kGSItdkcyQF7rNXr0dQ8HX9lBb5eP6tpm1lZPXTE0Mc93dMSg80QrnW3elJ79nFwHax/diq1sAUagkzc7dwPQZe3BMF8kZI4wZEk/LDs/EF9aJm8Yci5NEc4ehXMVEMmKB86yvnhP/Lyz8TmPF4pTq9zGiC8fkpgDOZQXnxNZEIgH+O1nzAAAIABJREFUyPf/+HKIzC4oo/wzf4D9/R9JWVMzESC9rfFiWNdSRMfv97Nt2zZaWuLzJt1uNzt37lQxHRGRG3SntatvhIJjBrtdL/CpisYYhkFxcTFut5utW7dSW3tjvWe3g/ELwwOT9gwFezroe7Ul7bDDxHDCREi81mGAt5xhwPbt8cCY6F10u6GhIf63ZJwjfV7+7uAWgmf9rDsA9xy9fF/lhjqcmxuuOUAmev/TfdmSqA483oIqNwuWVcf/rnJf07GGwgYvnPw73up7mcjYKGeH2ghFg1MW6MkbihfVsUTAFDNTUbCE4rIqFuWvovC0wSsv72SB+VLhnDwYy2LSdSajJrhYAAG7iQfeiPG+n06sHJtYN7Lk43XAxDmQDocT15rNuFx1Uw5h9Xq9bNu2LTnUf+vWrTMyT1tE5E53u7arbyYFxww20xd4Y2MjHR0dVFdXp/QSplty4nYV7PZP2gMIYBxqnbDtZNtNZbJKpvYq1w0PO72l/H7weFIDY11dPDCqJ0OAl095ONC9G197C2sPwj1vmykYjC9vkugxT1SInWwY7VDYSJnfOFXRocF+P0df9wBcV1C8Volh223Gm8n5wJOFSUs43iNZOJTFZ995P8FgkGPO+3m7tIWCwSAFpwfICo0xZoGQBQI2yMrJIhpLXQOyc3keD5yq5Fe+dYFI4AKh7HjwTMhd4Yr/uWsNPPAAPzn2r9dVRKexsZEdO3ZgGAZOp5OGhoY7YvSGiMjtYqbb1dNBwTGDTdcFnljf71qXtrieuYc3arIevr6f7J50Pli6x9yIqZa0mKyRfCMFSmbUli3x4AgKjJLWkT4v3z+5gyN9Xhb7DJaejC8PU5RaOJWLlXYuWoOMxSLJaryT6S0HS0E8RK4urWbd3NpkZdtb4cp5pInCRGdyDU4si2/TVwYnxq2ykhOEZSdg1frf5odn/w1zNL78h81SQN5FEwuPDSbXkgxnwUieiZFKB72jFzi7HJafgFhWFmuK3dx9NMbwz3/KgC1IST9gTj2/oppaIssW015s8PPTu1OK6Kxft5XKyomjE/x+P01NTXgufYadTifNzc139OgOEZHpouAos9p0XODj1zc8ePBgSnGaqdZzu1kMnzfZqEu3luD1SFdIJNFLcqXxhUhmPa83Ppexri4+l1HkGhw428KB7t2cG/YT7T0HR49S1hdfa3T88h7X6vSCeJAsL11JRd5i7vrlOoptlckezesV7PanhMMrl0BJiObaCC+sJLR8MZEFlcwpX02YMH9/4atErJBlsjAWi6Q8xm4ugtFRYqNBrBFYULCK3FEzdJ2h/J1+ssOXt71oNxE1xwhbIWiDyLihq+YImKNgjpqImmF5W4yyvnjV2Kg9n/MPLeWY9QShsWEAPvnk86xcOXkgvDJAXvmzW0REJlJwlFntZl7g27dvZ8eOHTidzpT9+f1+ampq+OwHHuCjq+dTfJ1hIl3ourLxdrUeQ0gNfvYqF5b8opRjlT1Se0sqTIrIexMJGPS92jLpMO/x61EOdh0j2jtxPcfxksNgx33+JzPV8ib2Khc5S1fht3bRPniIjiKD3nIYnGJ3xTmVmM0WCo52ErJCzxyw5TkwmcwEQv3J7UyYsYSiWC6FQFMM5prms6Qnj6z2DnICoZT9DuXBYEG8sE7sih7HxNqS2aOQPwT2eF7koh2iOdk8VP4R5j7ya9hK55Od56Bk0cRg6PV68fl81NdPXYRIRETiFBxlVnsvF7hhGDjGhcBEaff6+nqamyeuOej3NOLf1fSezvdajA+GtkontjmLk7fdqmUHROT2khhpcHaojXfeeYET7+4lFA1S1gfzz9vINdJXSx3vynmXnQvg5dO7OHC2haFwPFCuLnOzurQ6ufwMxOdiHjnfmpyPmW91sO5nVqL98S7UwWIL/YURBgphoAjyTHkELREisdRwaB6Dx5y/jXvRb1FsKuHtN77JmXdb6e72UXHmcndk2AJ9pfF5jzGTCfNYDNP4ojsxKB7No7gnTDQWZjKVK92ULHJRuaKakkUu7GXOa36dREQynYKjzGo3coHX1NTg9XonzEs0LhVCcUzRo3i9BWGS+51iSBhM7I3MqCGhInLNEgV1Xj69iyN9XnKC8Gj0Ee4ufZhVJY9gs9gnfdz4nykvn/IkHw/xojxPLN3KE8vqrzqX8pljjXz/5A6GwgaLz+Wx7HQ20YuXezFHs+HsPBgzx4fYBnOhIs9JttlGZ+BYcrt8q4MlRfGeQVfFh+k13qXjJ9+m8FyQivNZWEKXC+r0lkF/cbxqa95IvPcy0StZbKrg0cg6+t7+MZGAQdgKI7mXi+0kzqPUVMYSp5v7P/Ink/ZIiojIZQqOMqulu8D9fj8tLS0ThijV1NTg9/vZvHmzSraLyB3n5VMenjnelKzKCrCkyMW6yo3JHsPVZe5kQGwf8PH9kzuS21fkOfnkigYeW1R3XccdCht8/8T2ZIB8bM6n+UDOR+nreJPONi/n8oboCL8LwFiejZ6iYHJtx8LsMvKtDvqDZxi9NEcxIddSQDgYIBaL4TA7eL/JjfW1Nwn3dqZs11sGZ+aCOQZFA7Cidz4PbflbFt39OIE3vfR/fxfnX2khYIdTi+DkssuPtYRhzlgZy+Y9QuWK6mTPJExPMTMRkTuBgqPMalNd4D6fj7Vr1wKwc+dOlWQXkVmnfcCXLMrTPnD1olmPLarjiaVbkz1+7+W4X/lJDUNhY0KvZVunlz0Hmmjr9AJw18qNXCiI8EbvD1L2sbBgFYU55YTHgnQGjjEcHki53zwGDlMJVdaV3DWykMhhH8HTxwEYsZnpmh/lfGm86qsVK/ea7mWoZyGWvt2UWipZ+k4Ec3cfRgn0zcnifHG8J9MSjs+XtAVhTsW9zL37o/z+n36DggUPsHPnTgVIEcloCo4yq5lMJh555BGeeuqpCeFw7dq1bNy4kbq6OjUGRGRWOzfs50ifN74240gH54b9VOQ5qchdPOU6ke/Flb2P+VYHT61uZnWZm4o8J68f9fD8K9sYGTXIzXFQ7dpK+aIHeHfwzUmD7pIiF/PyltPW/zq9wx1Esy7fZ4pCdszKilwXS09ZYP9rKY89MxdOLoWhfFh8Emzjir5mYWFBl5m7fhHi+Ao4tfjyfeYxKLgIhYNwYQBeejePhzf+Pn/21b+6aa+TiMidRMFRZjXTuMoJ7e3tCogiItNoKGzwzPEmvn9ie/K2ijwnFXlOYqNBhjrfgQvxqquJAFm9tp6oOb4O5pHzrRzp807eYxqFLLLAbGKMy2lwnsXJb5Z+EUv7Kdpe9RAajs+1HLbB4fvgfCnM64KiiyZMl5oHJkzkRKxUngpRbMS3GR8iCwfiw19HR8AfKOHDn/sGH/zYJ2/BKyYicvtScJRZzWQyYbPZ+OM//mPq6+unLGwjIiK3TmLYbCIIjndPwXruGVvJ60c9AGx6tJnqtalzzxPFfw5072YobDAUNlLC5Pzcu8g32+kYfpvR2Ahwea5meccwx7/3NQJ9fgCsIQjY4UcfBIcB5efAGoHE14wmzDh78ph3PECPM4dTC2OETCHyzA6s3YMUD0cB6Leu4tN/8A0qV7pv9sslInJbUnCUWS0TLnARkdmgf9DPngNNbHq0mdycq3/J90bbM3z33b/g1MBhID4vEcCUl0c420zAFEhu+9iiOj6W/QnO7H+Ot/d7CNqg+ALEgLdXmTl6T5S5XVDaD5bLhVsp67cw73SE3vJ4VVgAM1Zy/BHmEG9a5JUsYvXj26h6pI7sPH05KSKzVya0qxUcM1gmXOAiIpnk+Ve20Xpw+1W3G7FBIB9Gi7KJREPYLHZql/0hlotBXjj61zguwJweqDwLa3xw7OPL8a4fYai/k7ndYI7Gl/mIYuKhkdXk/OwwpxdeHsLad6qQrFODrF1w+ZhVj9Th2tig9SFFZFbKhHa1gmMGy4QLXEQkkzz/yjYOn2ihaoGbkoLLExG7w514e75DMBIgOyuXOcUrMaLn6R05lfJ4mzmfOVQy0H8ieZslHB+2uu41eN+cjRz/7CP8+6FvEYgcJTc7xIADSinjvp8GWHwsyJH7TEQsMaJjVn74/TDzgU+sL2QsOAiAa2MDqz5crx5IEZlVMqFdreCYwTLhAhcRkbjJqrn+2l1/QmF2GW/2/ICfnnk2ua3VlMNc8wJiRj9DoQvJSq22EVjSkcVv5f4O8774l7w82MLLp3elzM1c8Qsz+cHo5equsfX8wdZnONm6k6Mv7SA0bJCd56DqkTpWfWireiBFZFbIhHa1gmMGy4QLXEREUl1ZzTVRKGd1mZuWtr/h1a7vMBjqS26fZypg+ehC+s69zZD9cpNh+QkLv13yh8yt/6tkKP1/r/1v5kcizD9zaaMYYILcnBI21v4rSxe5ef3b22h71QNAdp6De3/jrzk89Br3Lt3Ivctqp+lVEBG5uTKhXa3gmMFMJhNOp5PNmzen3c7pdE5Y51FERO5s54b9PHO8iZdPeYB4gHxi6VZWl7lpH/Dx72//Cf3BM8ntj6yCUSt85MX4Uh3FF2DlcSgdslFTuwP7pz8HwI5vfpVI+XE63/0uRf3hlGN+5GPfYN0v/R6hYYPX/6uRl9/aQX9p/L759pX80VNvT8tzFxG52RQcZVYbv45jOrP9QyAiksmuDJAAq8vcPLF0K/3BM3zz6JcZjgwScRTwY1eAwaJ4s+HhV2HT8/FqqwALI/O4Z+s/UvnAx4B4z+Yb7d/lld1/SHT44uUD5uThcN6Hv2c/ALaYjfLTQUr7oWSRi4c+1axlPETktqI2c5yCYwYzmUy4XC6am5vTbudwOHC5XNN0ViIiMhPODfs5cLaF75/cwblhf/L2x52f58ed32Y4Ei9uU1q6koGCKD+peIfuubCxBR55FcrOx7cvqriLe5/4Mg6XG4Ayu5NtX1xLQakP86V9xoCo2cTc+zeR1/sEv/oxN6/+6xa6j3mBeAXWhz7VrAI6InLHUI+jzGqZcIGLiMj1O3C2hSPnW/luzzeIRcLkBKHA6mB0bJhINESepZBfX/GnHB86yH9ZXuSteX0saYcPvxgfvgrwzj3ZnCkPcd+cD+Ne9bscP+rlzPHvMWi0k/juPmqC7lwwelfzT//rxwye9PL6t7cR6PNjzLdT9fBmnA/+KhAfSluR55yR10NE5GoyoV2t4JjBMuECFxGRG9Md9PPUm2sYGhskCwuWYARrCCzRy9vMza/i48u2EYmGePHCf+DNeY3sUXj/j2HOOehYDMHcy9vfv6iWe8prOP3cDk6NnSRiAfOlVsjJxTBYfPXzyrc6WF3mZnVpNavL3Cwp0ogYEZl5mdCuVnDMYJlwgYuIyI0LRAye7dzOs107CEQMAOZZnRSGcugeOD5h+3yrgyJLOX2BdmJjERadgvJzECiAvrLLITJqguE8iJmgaADK+uDEMhizxO8vzqnEmbcaW1cf/ad8AFxc6KBgThWdo20MhY3kMRPzMdfNVUVWEZk5mdCuVnDMYJlwgYuIyHsXiBjs6fbwbNcOuoN+AO4reIScYIyO8z8jFA1is9jJNttSlvJIKOuFhachO5TaC1lkKmHNUStzD/UwZrXxbccYvY+EyZsTv39JkYuaok1kv7gvOf9x1YfrcTz2Pzge+BkHuncn15CsyHPy2MLNPLGsnnyr5kaKyPTKhHa1gmMGy4QLXEREbq493R48HU3JADnHsgB70ML5QPz/FXlOnlrdHO8BNAxoauLwj7azrwZ+/H5YdAryh0ycq4glA+Tyjhzuf22Ukn44E8zhL+eOUvgwPGiBnjlgWeikxvwBRr/3LAwOkJ3n4KFPNVP1SB1H+ry8fHpXsipsvtXBlx96ntVl7ml/bUQkc2VCu1rBMYNlwgUuIiK3RlvAx7NdO9jT7QHAEoaFsQVcGO4EYN3cWp5a3RwvaOP1wpYt9Az7+c5vZbO3JoR5DIoGIWcUHngTcoPx/RYMQpEBPxiDopr4bUO5YBRDbwXcFVlG1d4TZIehcqWbhz7VTMki14RlRb64diePLaqbzpdERDJYJrSrFRwzWCZc4CIicmt1B/34DC9fP7GNQMSgIGrHNhwlHBkG4LFFdXxyRQMVIQc0NcH27fRUwAtbl3HkoTxaSw5zrhwe+Fnqsh6WMPQPwPF5WZTPGwNgzGTi5NIYuSXzuLejkKLXjwHg2tiAq7YRiFeE/buDWxgKGzy1upknltVP+2siIpknE9rVCo4ZLBMucBERmR5XFtLJHoXCkI3IWLwr8bFFdawureaxk07YsgX8fnA4OPLdBp7J3Y035uXn98PmXbD6COQPX953dNFiTpk7gXiADGbD6YVgLSxh+eEg89uGU3of2wd8fOUnNQyFDdbNreWLa3dq3qOI3FKZ0K5WcMxgmXCBi4jI9GsL+Pj6iW34DC85wfhw1MSyGxV5TmrKn2T9c50s+fNvxW/cuZMjH3PyzPEmvDEvISt8/PtgD8R7HjsXwuIOGCi0MpIbxmSCGDCUD23LwXmxjFWv9JEdjhfPcW1soCvs5y9f38S5YT9Lilz8+cP7FB5F5JbJhHa1gmMGy4QLXEREZk530J+sxjo6bFAQthENB5P3Pzb6CA/940FWHxjC/qFaaG7miD0+V3H/sJcH34wv2zFwKe8ta4PKs9BXDqM5wKUAea4cLizIY2lblLsOB5PFc+auq+UrP6mhfcDHkiIXze6DM/I6iMjslwntagXHDJYJF7iIiMy8QMTA09HEnm4Pw6MGlgjYgxaisUhym9WH4ckf2Ln38T+ExkaO9Hn5zpt/ROzNNxnKB8MBMTPkB60s6y0kt/M8/eVmwpYoACM5Jk4tjlGes4DVezqTxXPW/a6Hr/68lvYBH48tquOLa3fO1MsgIrNYJrSrFRwzWCZc4CIicnvxGV48HU0c6vdiiUAhhdijeQwEuwHID8BDbSWs/9BXWP3gFg6eeJYX/2sb4dEA5ypgzBLfT8FYPksPD2EbifdIJpb2OHo3ZOUV8OEj8zAdP052noP1v/dN/rTjtxgKGzyxrJ6nVjfP0LMXkdkqE9rVCo4ZLBMucBERuT35DC/Pdu3g1b4WAAqidhaMzcUw/IxYw8ntHltUxyNzPkHr89sY6Gujay4M54P1UmdlQayMe31BRmIBLNZcch94P9/LfRGAmsBDFP3odQAKqz/Os+WtDEcGWF3m5ssPPa85jyJy02RCu1rBMYNlwgUuIiK3t+6gPzmMFcBucXD/wHJy9/toXxDm3JzL2xYOWSg6H8FhLuF4WT8mLq//aDcX8cDLAwBYFy7nhwtOEJgT5f7sR1n18ikCfX7CJYX8vLqAs7EuDVsVkZsqE9rV5pk+AREREclclTYnX1qxk2fWtbOhso5AxOCV/DfY+4EweVEbn9kFNb4SKizzGMyPcHoRtBf1c/fAXGJZNo4vh5AVAtEB/r96OLYCwqff5YOvRal6Dbo6XqHNVYBrYwPW/kHWvtBFYTiPl095+P6J7TP99EVE7hgKjiIiIjLjxgfIL63YSZXdhe/uIH+3FUZG+mn67Bmaj32exQX3EiiAQ3POYgtFqG5bykgunCuDITv8c30+//IUDOfC6h6Y3wXBtsP8oOP/Uv2lH1I518Wyt4bJGjPxr0e28fIpz0w/dRGRO4KGqmawTOhSFxGRO9eebg+ejia6g34ANvwQ6l5fxS+++iQ7+/+WQGwQgLLIQgrf6uLM3VGCuRCzF1LiqiFn7z4e/O9BessvF8/JyV6OKW+Ijuwz9MyBaBY87niSuvX/QG6O5jyKyI3JhHa1ehxFRETktrShsi7ZA1mZtYA9H4FPNhzljRca+IeOL7Gx9CmyR6HPcpqT90cZuljEwjYrpsAgF17dTen8+5j/pb8nu7Cc/ItADEZD7zJy4Syu6H0sa4sf56Xz3+HL/28BT7+0hf5B/0w+ZRGR25Z6HDNYJnwzIiIis8eebg+et/6Q7px+7BfhEz9zUv7gp9l74i/omQOhnPh2F9ruoajoHObyXvIsRXz23u288/q3GP7xjxgugIg1vl2hfT6DBPBVDZA9CnN6ICsKmx5tpnpt/cw9URG542RCu1rBMYNlwgUuIiKzz05fPbsGdgBgD5h4fPCX6et8i978AGfmx7c5Y6ygtNOG+e5j5DBK4UWwZNmYezJI2Xm4UAyYwGy2MFY5h0MVXRQOQNlgDtGxUUoKnWx6tJl7l9XO3BMVkTtGJrSrNVRVRERE7ihbXNvjVVjPugjYYzw376e86QphKq9gYQdYQ2bmOY5jvvsYx3t/Gf/pGi5as4mMBTm9GN5dDvM7ISsC0WgE05kuFnWYeP1B6CobxZbtoH/Qz7++sImvP1ej4asiIig4ioiIyB2o0ubkS588yDMFP2DDgRKGskP8ouIcx+/LJm84yryebKxZo6yu9EJpDy/1/Ab+mJOoCQIF8JNH4st4FBpADEouxNiwF3wuOLTY4J6hpVQWraCt08tXdy7R/EcRyXgKjiIiInLHqrz/o3zpcyd4pnk9G34IIVOIDie8szSE/SLkRXNZVHCUX5r/AgeH38fz/VsYoABMcHoxHL4P7Bet5A2BYwA+9R1440FoWXOSRW/08Phdv09JoZPXj3r42tNr2bO/cYafsYjIzFBwFBERkTubw0Fly2t8ydbAtz9XyIYfxgvgdC6EsdERii9aKcrppWbucxTbO2m58BTeoV8nkJVDzAxH7gszOr+Msl7Ii+aBCf7rV+Dfag16/uPv+XjxZjasawBgz4Emvv5cDSOjxgw/aRGR6aXgeBvwer1s2rQJk8k04c+SJUvweDwYhn5BiYiIpNXYyNy9h/jS8Vr++bPxwjk9c+FsxRj2QcA8yv3lL1FdsJuO0Dye6/td3oqsIQqccPRx6AEruf3DfO3Pcll4Cv77Q7BjWxa+3U1kv3GIz//K95hf7koOX209uH2mn7GIyLRRVdUZZBgGNTU1+Hw+AJxOJ06nM+X+xH0Oh4N9+/bhcrlu2vEzofqTiIhkKI+Hs1/ewq7NsOcj8ZuW5NzNyPlOgpGL5J6upNX4CGftRRRazvGBohYKoyM8kf0JLr74LMMx+Js/gfbl8KH/tvJrz4SZM8/FA5/5O97q/W/2HGgC4KFVdXz6Qztn8ImKyO0gE9rVCo4zqKamBq/Xi8vloqGhgdraiSW/t2/fzrZt24B4eGxvb8fhcNyU42fCBS4iIhnM64VNmzhrM/jbv5nHmwvOkBWBkmEb4WiQBecKOOB382b5MgB+N/IPnFke5OMjH8a890VGo1n852+a+OWfRhjNBtsILD/v4JGndpK10Jkcsnrvslo2PdpMSaFzRp+uiMycTGhXa6jqDGlpaUmGxn379k0aGgHq6+upr48vQmwYBh6PZxrPUkRE5A7mdsO+fcytdPE3v3mGP/6XMmxZ+ZzPDxIBOisusuz+F2k4uZvcsSA/jb6fAz0f4xnLfk6/bxE55jE+9XQEoziLnBDEsqCj0ODlv99E709a+J+f2EdJoZPDJ1r42tNref2oZ4afsIjIraPgOEMSvYh+v5+Wlpa02zY0NCR7GXfv3n3Lz01ERGTWcLlg3z6oq+Mj/97HM08M8Vs/dhJwQDAHgpZRfB9o54/GXqDDvIDu4Sq8Xb/Jf+SU4ntfPmZbPq6DY2AvJIaJURt0LDbxxgtNHH+miS89eZAN6xoYGTV4+qUtPP3Slpl+xiIit4SC4wxJFLsxDIMtW9L/knE4HGzdunU6TktERGT2cThg507Yt4+CB9xsafTT/BU7hPMZyoOoCQ6t6OT3Ld9jHfuJmaIc6a/mP03vY+9DIcjOwXlkkP6DWYTDEDPFOLPQxNFjLez56xoemlfLH336ILk5juSyHVrzUURmGwXHGdLc3Jz8986dV59U39raeitPR0REZPa7NHSVujrWvhpgz2esrPnRUoby4+HxrSXnqXa0s+Xid7GYg5wO3MN/jTzJS+ujnC8zE/tghOzuCuz2RcSI0VcBR8I+vv+1asZO+/mzLe1ULXDT1evja0+vpa3TO9PPWETkplFwnCF1dXUcPHiQgwcPUldXl3bb7du34/V6AVKqroqIiMgN2LkTdu7kux802PLCST70J6V0d8KYGY4X9zBy3xh/bHyTyrw2jFAZz138PD+9O59AAZxefw77WBa/vG4bJkyEcsBfMsje/7OJrjfi8x4TQ1e//lyN5j2KyKyh4DiDXC7XVZfX2LZtW3I+JKAhqyIiIu/B185sY5t/E8c+dT9/9DfwqWdMLFt4nq/8aQmv74CQycTFqMFR1yhP2F9haeHPGY1a+M/Bpzg5ehcRK+yf087htufZWt+OxTKHmBlOL4IfPrOFtlc9bFjfyFMfe57cHAdPv7RF4VFEZgUtx3Gb8nq9bNu2LWUdx507d05ZffVGmEwmXC5XyrDZ9+LKdShFRERuNx99ewlnQn4KshxsnPN5vj781wCs+gV84Ss5bDk7ypodVvJzwgCYLTbOBUo41u3mfKyCFVlHeF/ej4haoGKsHM+fhHjyqQFKrfFiOyErfGZZA67aRrp6fcklO6rX1rPp0Zvz+1ZEbj+ZsByHguNtxuPx0NTUhN/vT95WX1+fUln1ZjGZTDd1fw0NDTQ2Nt7UfYqIiNxMF8cM/qGniW/1bgfgU+VbORFr48XIDygcgLqvZ/HNfx5j3v+Zi3XeWQDC2VmYxsZ4t/1DvDN2D0uiJ9mQ8z2G7VAQzueHf1vKx/4iD8dbxwDwPgpf6vw0G37rWynhsWqBO9kTKSIz72a3hRUcM5jP50sZJnojNm/efNU5jDAxMDqdTmpra9m6dest68UzmUw4nU42b958U/bndrtxu903ZV8iIiK30r6BFv7s9BYujhnMy3ay1vEY3wr9GwAP7jfxZ71/zvnaxfzdwS1Eo2HCVhNRUwxrVzm/OPdRYuYh/ofpP+mrjJIdzuMvPvkLXmr7B57r/gbPbQiQOwxf+elj/K8P/ndyvmNIgNVmAAAgAElEQVRXr4/55S7+5yf2KTyKzDLqccxwXq+Xmpqa97SPq/XCGYbBpk2bksVv6urq2Lhx400dkjqVTLjARUREpnIm5OfPTm/h/2fvzqOjrO4/jr8n+56HhH2dCMiqTgQFFWXignWDSUvr2jJB22prJWlptbY1CbZ20TpBrbvMYH9FrdgE3BDUDIgKqGQU2WTJsO9hsu8zvz9GUqmCLIHJ8nmdw1Fnnnlyv+dEzvOZe+/3flzlBuCS5ImsL1vG+tS9JJVD1s4rufmSJ7l76TgO1u6gIRKawiGuLIpB741k5eAhnNvwEvt7+gn4I+jaL5dzB17K6zEFvNDrZQBsH/XlqZFLSQxLPiw83nSFkz7djt7nQETaj87wXK3gGEI+n4+MjAw8Hg8WiwWn0/mtzXJaU2f4BRcREfk2H1e5yfFmUtnso2dUf4b7+vCf3h8CMLlkENOvepsZS69kZ9V6msOCexmTKmDyKxBluYbP6l5nizl4r7nlWdSWhdElZg0105ZTG+unW1kEzzY+wRXGZOYsymLVpiJiow1uusLJWQNP/RfFInLqdYbnanVVDaHMzMyW0FhcXHxaQ6OIiIgEjU6w8sawUjKSbexu2Mq7cR/yoO/3DF8fztz0jVyxeRBnD7ueUT2uIdwPsXXgM+D5H8GGg68zZn0XRnwOvXbA2ezGbyRyIGYMta6fkLJ2AJcubOIngR/zXNUj3HptYctxHc+9lqmOqyLSbmjGMUS8Xi9paWmYzWZKSkqOqfFNXl4eZrP5mPZMHovO8M2IiIjI8Zhf5uLJPfk8O7CYhGoTMwrPZe5lZQBMCExgSFlX3ts2B78JamPBFIAeu+Gq4mgaqKchEj4cZxCIvodPm8KJ3v4q36lbQl00vJth4qU+i0nrezGrNhUxZ1EWtfU+brrCyfnD7aEtXEROSmd4rtaMY4jMnDkTCJ7LeKzdUvPz85k9e/apHJaIiEinNjHFzhvDSukdZSapywAe+u4m3nhyIsNXw0LTQlwpr3LRwCmEBSC+JviZnX1gzvfqCQBRjXDBUh+BunuYMTaC2697kMUJlxNTD1cvCPDI05NZufg5zhpo49ZrCwEoXJLDjn2e0BUtInIMFBxDpKioCICcnBxMJhNdunQhJyfnsGM4vurQeY4iIiJyGhkGw/88jxeX3MHU56DSVMk/EmdzzjlTiI1MJq4WIpqgOh7+/YNg85yoRhhVEsbzK3OoqH+CwltfZsnBwQAkh+/lz+/9lfkLn2BQXys3XeE8rOuqiEhbpeAYIocC4qEjLHw+HwUFBaSlpZGeno7L5cLtduN2u8nLy2vp7traZzmKiIjIt0v6y+Nk7LyVp34CSeUw2zSb5qGDiY1IIrYOYmuhLiYYHisSIancz/gVMby71cUfF3+Pktn7WPl5BAAjmjfwzrJ7mL/wCc4fbj8sPG7c7g5toSIiR6A9jiHyv+ug3W43+fn5LcdyHElhYWGrHdXRGdZii4iItKYnb7+d1K1P4bwT1oyA1NoEzt6RwsGqrZgiIvHFNRJdB9e8AYlVsL9/PEvPrSa1NpnIjedyZ+ZPeXnuDZiAg6YkLhv7FyZOuIMVa1zMWZQFoD2PIu1QZ3iu1oxjiOTm5jJlypSW/z70i3a07qrZ2dmn5XxHERER+WZD/vod/vRnOONjmFYAB2KrWGLeSlR8CoGmRrrXJdEQDYsuh4ZI6Lq1mmHbkmmuL6euXzHFB+aSk+0lYIqkS6DisJnHW68tJDbaYM6iLHVbFZE2RzOObdT/zjyazWbMZnOr/ozO8M2IiIhIa1pf6+G2TRlUNvsY+hH88in45T+i2JXawIgtCYRVVhEeFoUvroEu5WFc+6ofgN3n9mVN8nbCAtDDGMqtZz3HP/95CeE0UxYRz5ZbxjBvwDts3O7msVcyiI02uPN7xfTppqO6RNqDzvBcreDYiXWGX3AREZHWtrPBy12bJrKxYRVxFfDA72HOz5JZOLacflshtQwiwqI5GFdPWimMez/YNKdh8AA+6LOFiGYw+eN458EaplwfTjjNbOkHvosvpnDwkpZlqwqPIu1HZ3iu1lJVERERkePQO8rM3GGfMTnxDmqSIPsRSHeX88LvB5HYewgHUqDJX09iFewxx7J6OEQ0Q+TGLaRv7kJ9FATCarD+JoylH5upju3KgG0w4PX3uHjDGV9rmKNuqyLSFig4ioiIiJyA35/xOHcFHiZQaeKp2+G58Rt59ppdJPYYxNZ+4A8PI7y6ll1j+rNhEEQ2QeL2g1y8OhV/dBRhJj9n/GAbP7zByf6UkcTUmtiQWIp9zxSFRxFpcxQcRURERE7QVEsOU7f+jdp18PF5cP0zFfzmxxu5tGEcGwb6aQqHqoNb2Xh+CuvODJ7x2FB1ANvy3kQndafZ38DDxddxw1W/4vP+t7DHiGZ2j+d5YcfXj+ooq/CGulwR6cQUHEVEREROwrSbpnP1smy6rRxO5ZdLVy2PLWXG0gnsHpxIUzjU15RRaknis5FglMPmMC+2d5OJTx2A3wTPvp9Ft4/20f/fZwFwS+o0XioNHsvxnTG51Nb7eO61TGrrfSGuVkQ6KwVHERERkZPkcDhYlLUah7mQRBJJbI7j+z9ZyPOPjsY/YjiVCVDfUIH3zEi29IOuZfCxsYFr34oioUtf/CaoHbyarT9dRfyKEfhjGrmh1+08t+FpvjM2j7MG2tixz8Njr2QoPIpISCg4ioiIiLSSjGQbLw37jEl/Xg0WC8P/UcwLPwwn+syz2N0D/P5GVp4Xxs6e0G87LDhjAz/6TxIpfc6iru82sh4fxvYzl9Jn7VCGeBt4773beXp1ATdd4aRPN4vCo4iEjIKjiIiISCvqHWUGsxmKi8FiIfn9Vbz4m/7cMDSXvQPiMPn9rBgLn4+A9M/gpbPWYHeBOeEsylI8PF+aw/Zha7mkOA7ztgBvrLqHD/d90XI0x459HgqX5IS4ShHpbBQcRURERE4Fw2gJj0kvvk52zhb+PXI1TYPSaAqHjYNhycUwbB3807KqJTy+u9XFIyVZPJK1g/1dorCsr2eu8ype2hQMjylJZlascbFgWV6oKxSRTkTBUURERORUMQwoLAz+0+Wi74/zmTNsJYERw6mJhbJUWDgB+m2DOSMPD4+/f+t7PHt3A82BcLr7y/hk7gTuXeZm8oSXiI02WLA8nxVrXKGuUEQ6CQVHERERkVOoyOMJzjwaBhWvuLhtQT9mxD1ExFkWDqRAUyS4MyC6HmaN+m943Mi7WH4excsvxQImUgPlNC22c81bb3HuuBeIjTaYsyhL4VFETgsFRxEREZFTJCcnh8zMTFweD5SWMv+OPnzRp4ppm6/j/rAHGDbUxtZ+wWtXnQON0fD4Rf8Nj30uaOCC39ZjsWZjCgTD47Xb/84P3n6L7unPtITHHfs8Ia1TRDo+BUcRERGRU2TKlCkAZGVl4fF6ueW3n5P/bH+q4pqZtvk6bmyczJ2DHKw/E8IbYVdvwATOUau4dW4yvROH0EwjRV4Hw86fgskPqYFy7qp08csP36fnkLsBmLMoK4RVikhnoOAoIiIicopYLBacTicAGRkZ+IBJ93/aEh5z9t3Cgf1f8MrAEvae15+4atjbE3b3BOfApdy5bBTJPYfgN8Eb+1yk9rNi8kMXv487K5xkf7qHT+NvYsc+j8KjiJxSCo4iIiIip5Ddbsdut+Pz+cjIyADDYNL9n/LMYxYSK+BflU/w4ppcXu/3KUljJxBXDfWxsCUNnkiYw/R9U1rC48eRbnbujWiZebyt6mXcVd1ZGn0DK9a4FB5F5JRRcBQRERE5xZxOJxaLBY/HQ05ODhgG5z1TwjOvTiSxAuab5pP72Xd5cMBLGGOvossBaI6A7f3Bsede7q67qyU81o9t4r3xsVTGQ5/mHUxo+IhP6nq2hEed8Sgip4KCo4iIiMhpUFxcjGEYFBQU4HK5ABj6t3k8u346Q9ZBsamY2z4fy18HzKFh/FjiK4MdV7cNgJeW/Yrcvs+0hMe+22pZcgnURcMFte9zLtv4pK4n74Zdw+KSAnVaFZFWp+AoIiIichoYhkFxcTEQ7Lbq8QQ7oQ657UGebfgHE+fBetZz2+djedL8Jgnp4+i6Nzjz+P7oOp4rvI4/nfdWS3gcsRbeuxh294BzR+7EiI5lVfNgVoWNYW7xz9VpVURalYKjiIiIyGlyqFmOz+cjMzMTn88HQOIPf8aM/k4mzgM2bIRVq3hqxHtEnTuWPtvAHw4fjiznT/Mv4A/jFuBPSgBgcGkk//4B/OvCD8mzgBEdy7vNF7CjMZ7HXsmgrMIbumJFpENRcBQRERE5jQ41y/F6vcH9jv99gxn9nTwztZnEjIng8fD4qA+pHtSTkasgsgHWG7v447uXcc+4V6mNAZobOacIauPA0fdv/OE8CwBvR92Er66W517LDE2RItLhKDiKiIiInGYOhwOLxdJyzmMLu52kR5zg80FGBrhc/OOytRzoG8tF7wfD49bmzcxd/yd+eoGTmlhIToWBa+LY0q+Z18PvYKJ5COX19ZTEX8+OfR4WLMsLSY0i0rEoOIqIiIicZoZhUFJSgtVq/fqbdjs4vwyPWVnE/8PFbzI/YMuQWEZ+HrzEs+9ttld/we1jg2dEpm+PpHtVHO+ml5Fafhc/rv0Pnqo4NoSPYsHyfO13FJGTpuAoIiIi0tbY7VBcDIYBOTmkZc/krps+wNczloEbARPM/eLPbG78ghuG5NJYW86oknDMZcmUJTeS2rgXe9UrLA+MYV+gm/Y7ishJU3AUERERaYus1v+GR5eLtEIPN/xgLuERMfTfEnyIK1z3Z2K79ufS/naiyio596MAK0ZF8MUg6Onfh833Hz6Ivbllv2NtvS/UVYlIO2UKBAKBUA9CQsNkMmEYBhaL5ajXWSwWHA7HaRqViIiIHMbjgYwM5l3iI3cGTO/xILufvp+tRgVbB0BNLPzy/Bf5onQB7251cWAnTPwiiurkBjDBgphLCO96JudVPctZA23cem1hqCsSaVdMJtMxXWe1WluO3OmIIkI9AAktn8+H2+0O9TBERETkSCwWcDigMAuAh/b8mt/d8Q/i/vJrypNrAHjgsxu49+wX8dXsYyWvs6oplWE7dlEfC1fWLWHugXh8XS9n1aYiCpfkkHmJvhAWkeOjpaqdnNVqJRAIHPVPR/7mREREpK3xer1ff9FuZ1Kmk/z7gv/5p50/p+evH+SCjyJJ9kHKQXjg0xs4e8B36BrTn4Zuu1g/DPyACbDVLmRZwzBiow0WlxSwYo3r9BUk0s5927NyZ1nAqeAoIiIi0kYUFRWRnp5OXl7e19/8n/A4Y8/P6XVHHuPeDwuGRx885P0FPxiRS9OXa8q2msFvgkiambTnaeoHB2ca5yzKUqdVETkuCo4iIiIibcShvgP5+fl4PN8Q7P4nPD5U9ycG3/h70kuCZzx2PQAP7J7GZWfeQU1s8JrtfYMzj7HU0/h+NkNGPQqgZjkiclwUHEVERETaCLPZ3NKQLjMzE5/vG4Kd3c6krEJ+6oqhMqKGJ5oe4/whPyS9JPh24q4q5oW/xrjBdmpiwR8Oe7tDAEgNlLPo40cYOcROWYWXOYuyTl9xItKuKTiKiIiItCF2ux273Y7X6yUnJ+ebL7LZuGPKh0x8M4r13cuYmb6YQRU9GLIOwv3g37GNJalrGDfYTkMk1MVBdWxw5vHs8g38u7KWlCQzqzYVsWpT0WmtT0TaJwVHERERkTbG4XBgNptxuVxH7n5usTDjO8uZOA/Wx27l5ax4hnwRRq+dEFcL23euYGnqOlK6DacpHPb3gLKU4EfP3fQSpWk2ILjfUUtWReTbKDiKiIiItDGGYbQsWc3KyvrmJasQDI9JDibOgw0Rm4mfdCPpJRDRAD33wKrqZewdkkTASKYpHKqSoCzZREw9fJjyGJx/K7X1Pi1ZFZFvpeAoIiIi0gbZbDZsNhter5eCgoIjX5idzYwSG/n3wfW5qxkRcy7nfrnfcdDGYHisGXkG1fHBDqsVXQKsSotj/dlNPGV+h5TU0azaVMTikqP8DBHp9BQcRURERNoop9OJYRhH7rL63wuZtNUCHg9jlzQycmsS6SuD+x0HbYR1tSU0nj0sGB6BxEAN/Td2p66XlyfO7Ep9IJoFy/N1RIeIHJGCo4iIiEgbZRgGubm5QHDJ6lEuhOJisFgI/3QV49f1IM1rYuSqYHgcsAU+j1hL9VlnUBsHTQETP3jxIAC7zy5m+eBbWpasar+jiHwTBUcRERGRNiw7Oxur1YrH46Go6CgdUL8SHpM/2cDI7QaDNkGPfeHE1EOf7bAuejNlI3pT1SWAP7aR778SDzH1bB79TzaYr2THPg/PvZZ5+ooTkXZDwVFERESkjXM6nRQXF2Oz2Y5+4VfC47nvHiS5MpyzS5qJbo6k235ILIdN8TvZOSCKTYPgvGXVXPN6Arc7G2iOeJstKZeycbubBcvyTktdItJ+KDiKiIiItHFmsxmr1XpsF38lPF7ybjNR9ZC8vwmAtG3hRNXD3i4N7OgNH18YxbXzqwj3hzH242ZKTXvYED6KBcvz2bjdfcrqEZH2R8FRREREpKP5MjymJpt5fxysGBMgviacsKZmBnghzG9iX3fY2bWB98aCccAPwHWbV+ONCWdNYLj2O4rIYRQcRURERDoiw4DCQu75C0TXwfrBzUQGIomvhV47AgBs6w8bB8SxuzfUJ8QQHoDJO1awPG443vIyne8oIi0UHEVEREQ6KouFobc7uKsAmiJhf1IjAL0rE+i6N3jJnoE1vJtmJtZXR31CFCbgtvJX+DDiKlZtKmLFGleoRi8ibYiCo4iIiEhHlp3NzTF2Ll4CB1OhOSKMxoYqzAcSSN0fvOTAyN1sGGRiT5cGmsJNJNYEODvsLRYGrqBwSQ5lFd6QliAioafgKCIiItJO+Xw+PB7Pt1/odPL34msY8Tns6OWnMTKMpvoqBvu6kVQOYdF1rO2TiD8c9vcIB2DoPh+m8AY+qEvTklURUXAUERERaY+8Xi9paWlkZR1bqIua9X/k/LMb530Eu3r6CZhM1FXto+duSKyKYP/gCjZ1i6cuqglfaiQmwFa+mCWMZ/62vazadJQzJEWkw1NwFBEREWmHzGYzFosFj8dDXl7et3/AMBj95AquXBTGOZ/Crp7BBjnJDbF029NEckUC20ZUsyMhEV9iI/XRJiKb4Sc8wSIm4HjrV+qyKtKJKTiKiIiItFNOpxPDMMjPzz+2JatmM9brHmLMcoipA18yNDbX0quxK0m+KqLqYik9p5KKsDj2dA/gN0Gv8noGdF/G3IbxWrIq0okpOIqIiIi0U2azmdzcXACysrJYWFPEuB1prGk4cohMmZLD+ZEXce1r4OsC/ohwquv207epJ93219JsCueL9BrqwyLY3zX4mRu3LKchEp7ZuJvFJQWnozQRaWMUHEVERETasezsbKxWKx6Ph38sLGB7k5fpB7Ko8B95WenIv75Gn93hXPsq3OJqJi4skdqK3aTUxdF9fzNViVBqhpp4ONgtiuiGAJdHFbOcscz+8FF1WRXphBQcRURERNq5Q0tW52cuZkxDBmsaPEw/cPiyUh8+MsnEg4eoOIPhV09n0CaIqYdbXokFIL4unPhqiNvQk+3dYyiLj6QypgH/qHO5fLQLgLkN4/lX8S9Pd4kiEmIKjiIiIiLt3FeXrK7P2s/wKAsLa4oOC49u3BRRRCaZ+PAxYuI9REUlUpYKqWv3Mnn3JdQ1VTLIP5TNBY+y57cu1vROxh8O2/at4icjzsE28CwqSeZfpbvUZVWkk1FwFBEREekADi1Z/fT9VQx8eQxJYQZzq1zcsCeDCr8PGzbs2PHiJYssouIMLN+bAcC2vjDyySUMixvN3up1jLpkHg0HerL72Ty29YV9XRsJmMA54UYSIyNZzlicxfeqy6pIJ6LgKCIiItJBHFqy+ti0p3i6+VWGR1lYVudmVkWwoY0DBxYsFFFEHnkMn5BNSn8LVUnBDqsTn91HfKRBtyH/xwDLG1R/YWHFonv5/Gy4d9mlGNGx/HLUpQB8UhXDguX5oSxXRE4jBUcRERGRDuKrS1YXuN7m6W6FJIUZFJTns6bBg4FBIYUYGOSTjxs359/oAGBXL4jctIVbtgeD4ZgrZ9Jj+DtULb2a/U/dy2u9S3h1y2NM7tuTKVVzCTTGsbikgB37juEYEBFp9xQcRURERDqQ7OxsSkpKyMvLo2+EmezkYJA81GnVjBknTgAyyWT3UINB4+zUx8CBVOj1xH84K8VKvb+aCd99ivjuG6lecjXl71/FPdXTeK/4GczN27mw5mN2NvXV2Y4inYSCo4iIiEgHY7FYWv59alI2kxPsrGnwcMOeDABs2HDixIePDDKImvR9APZ1N9EUDpv2L6cyASrqd3LVj+4D4MDTv2Pf2ot4/MwnqOh9JzHUc0bdLnbt9uhsR5FOQMFRREREpIO7r4uD4VEWpiZOa3nNjh0HDnz4uL7rz+l/0U00RQQoT4KfP1RLRGwS9VHQaNpKxq3ZABx48l7KE+OZlbyeT/3nEtPUTFliBAuW5+tsR5EOTsFRREREpINLCjN4o1cJkxPsh72eTXZLp9XnbPsB2D0girhqsD9awYHU4HXduq1l8Hdm4q9N5MCT92KMWcRbPc5mF90x72yi1PBRuCTnNFclIqeTgqOIiIhIJ3ao0+qcrgupv2I8jTRQ3iOGYevgCk83fMlQ31zNRWM+JL7XBmpWXkLNcz/j6u4udvaIAKDnLhNzw4p0tqNIB6bgKCIiItKJGRg4cWJgkGNbDLFxeHvX4Qeunr2PmKRu1EfBwZrtjL/pj4THVOJbeh1hlXGkxu5kTVx/jIoAgTB4+Is7Ql2OiJwipkAgEAj1ICQ0TCYTZrOZKVOmHPU6s9mM3W4/PYMSERGRU8Ln8wFgGMY3vu/BQwYZjFjq47bnoFtTCn0+L2PDWXE8eGcNvXdBdHg8W6tSWPbYC3Tt5eGaa++k0RRGr60RJDQ38FwWPFr/ILbB009naSIhZzKZsFqtFBcXh3oop4yCYydmMpmO6bqO/j+BiIhIR+fxeMjIyMBqtVJYWHjE69y4ySCD++4PZ9DeRAatrCS2ppnCe4byTp91dD0AkWExrFz5PTYvuoNRGQ8yctA8qpoTGbmtkt2Jscz+eT0vRL+CDdtprFDk1NEzc1BEqAcgoWWxWHA4HEe95kjfTIqIiEj7YDabMQyDoqIi3G43Vqu15b0Kv4/pB7LITs7FGmXFgYMXJuRwx5M+9p03kLR3NjHhkXUs/0dPKut3k1hVR/qYeRzYOIZPin9NWto7JIRX4o3pjrlyL+e4k/jhZTfxXsQHWLAceVAi7cSxzLMda7hszzTj2Il1hil1ERERCXK73WRkZGA2myktLW15fVZFATMO5tA3wswbvUpICjPIIosef3ExdD1ctD2N6v2l7Bxq8MC9ARK3lxPdABWBRN579N907/kZV0y4m9qIcCrWnc/bTVfTdOcT9OsVxpKw9zBjDl3RIqdJZ3iuVnMcERERkU7AarVis9nwer3k5eW1vD41KZsJcTa2N3mZVVEABDutbh3XH4BFlzeT7IPe63z88Y0LyTr7YQBSwxvpf8n/sXPLReysOJPYpmYqhuykqTGW7u8PpLp2PwZatSTSUSg4ioiIiHQSDocDwzDIz8/H6/W2vP5QqpOkMIOC8nzWNHgwMPjNuHmUpYYRt24r7951FuFNYLz4Jpd/0oUbhuTS6K/jvDHvEm3swl04k0YiGNy8hbPPeps/hIfzg+fr+LTEFbJaRaR1KTiKiIiIdBJms5nc3FwA8vPzW15PCjO4r0uw58ENezKo8PuwYKGv7ecAbKhfxZpRsQDs+Os0LvdfRnykQV39Ls7/4W9pbEjE/dafABgZvoDA8MlEN8Biz8zTWZ6InEIKjiIiIiKdSHZ2NmazGZfLddis4+QEO1OTsqnw+1rC4w/GPQJDhjJ0PTz3oybiK6G5poK9v/4RWYOCQXFIajNnXPEEO7dexPpNVxLZDK977+LskTdRVuFlxRpXaAoVkVal4CgiIiLSyXzTrCPAfV0cTE6ws6bB0xIeJ970AgC2uY385tFYkn3QsNPLsPkbGNPLxr7qUsaPW0py2kqWvfsHPqsaw7rhfl7qtw7QrKNIR6HgKCIiItLJ2O32b5x1hOB+xwlxNtY0eJh+IIuU/hYGTriDuFoI1NfybgaEBcLY968CbuVW4iMNyqq2cG7mHwFY+/rvaNjXi/XRKwmMHMmOfR5WbSo67GcUUYQHz+kqV0RagYKjiIiISCd0pFlHCIbH4VEWFtYUMauigPQrfgPAhEUmbpsFSy/0A7A//xfcPfKfAKRGV9H/4uepq0hhz/2P4q9OYHH39cRVwyuFP2y5twcPmWSSQQYuXKe4ShFpLQqOIiIiIp2Q3W7HZrMxZcqUr72XFGa0dFqdWz2bhK5mBo2zE1cT4KKl8PPHYbk1joadXprmF1KbHE1jUw3njJtF6rAl+A/0ZN+cu6iJbiQQEQ7VVUxz/goACxZyycWHjyyyFB5F2gkFRxEREZFOqrCwEKvV+o3vDY+y8HS3Ql7sETzQ3DIpOEN567yuANydW8MXZ8cR9twsLkr4Do0RENbUxIhr/gZA3fuX4iu18NG5zQCUb57HW2vXApBHHsUUY2CQRRZFFP3vjxeRNkbBUURERES+0dgYK0lhBgAJXc0Mn5DNVbe+TK53CuUG/PF3wSWrV/25hED37gCkhlUx+DszoTGG/Y/fx8bBcNAwYY7YxP0v/ndZrBUrhRQCkEWW9jyKtHEKjiIiIiJyTM6/0UHPoVbyzC4mLYxj1Zl1zLqvP5Gbt3LXZ5fgSwZ/oImR58wjOW0lgQPd2ffy7SwfE6AxAkazkLvnPt5yPyvWlmWrGWQoPIq0YQqOIiIiInLcCiryMXzwz8t3siE9kZ6PzWH9pHEAACAASURBVCUt2UJjBPj9DQy6/EkAahbZ6LMlnO19ITHiIKtK/o9d5Xtb7pNHHnbs+PCRSWaoyhGRb6HgKCIiIiLHzTx5OrmPpuBLbOJXjnAqE8D+0H7Kk4Pvn5Hipc+FL0F1Anu852MC9naD86M+5Nbn/nzYvZw4sWHDi5c88k57LSLy7RQcRUREROSEZPf7O3YXbEv28WtnV5LXbOe67cFZxwZ/DUMuepZoYxcr3rqP6uYE6mOhNga6H3yV+Z99dNi9HDgwMMgnX0tWRdogBUcRERERaeFyufB4jh7cZlUUMP1AFtjtPOzoj8UDywft5+HcJK78q4ek+F4ApISbGHnzb2lsSOS9RcHGOPu6Qb+oTfzxlX8cdk8zZnIJdm714m39wkTkpCg4ioiIiAgQDI1ZWVnk5OQc9bpZlTOZW+VibpWLLjn5FGaCURnBP20VzL8Opv5pF41RYTQ21zA0YhsDLp3Fnm1j2LrzPPzhUJEEF5rm8cTiw4/hyCabUkqxYTuVZYrICVBwFBEREREA7HY7VqsVt9tNUdGRz1Z8ulshSWEG0w9kseYmC2bMFF/ShNGcRO4M+HwkXFKSBEBtTIAhF84iOW0lSxfNoLE5inIDvIPrmb3M/bV7mzGfoupE5GQoOIqIiIhIi9zc4HLRo806Do+ycF8XBwA37Mmg4v5fY/HAuzOsAOQ9EMWFb/q4pDydZn8DXWvjGPq9B/CbwihZ8VMAAgm1bD5nCSvWuE5lOSLSShQcRURERKSF1WrFZrPh9XpxuVxHvG5ygp2pSdlU+H1Mv3IRmM2kz5hPdsVUKmIbeOjeKC51lDAsbjTVYTX0Cuxm0DUFrP38enbvOocuPjgzoYSnNt19+ooTkROm4CgiIiIih3E4grOJ+fn5+Hy+I16XnZxL3wgzC2uKWPiHMQDk/rYOCxbmX9XAv26CzFcjAIgwRdIr/U26W95kxYfZAAzYAisG7OU/K+45xRWJyMlScBQRERGRw5jNZux2O16vl4KCgiNelxRm8FCqE4BfXb6A1WMSMea8gbPyEQwMHvo1fFazjAsbz6fR1EjvnTD42plU1nfB80kWkU3QfR/MqphJbf2RA6qIhJ6Co4iIiIh8zaG9jjNnzjzqrOPYGCv3dXFQGSjn14/HU+73Yfn7OzgJBsocBwwpXEt8WBLVCZAQqOKcKdNZ8/kPWLHiDjZ1S+bzwXU8t/LO01KXiJwYBUcRERER+Rqz2Uxubi4+n++os44AU5OymRBnY03qbmZOA2bOxOazkksuVYnwm/sq+d7HAwCIrzWR2HMjAy98m7Wf3szOJ4LnOz4T9y/KKrynuCoROVEKjiIiIiLyjbKzszEMg5kzZ+L1eo967UOpTpLCDGbdCtsSfOBykUceNmx8MQReOXMVVzCB5vAACZWQOu4pIqLraVw1mgP//AXhzfDgi6NPT2EictwUHEVERETkGxmGwbRp0/D5fMycOfOo1yaFGTzdrZA3Aq/Tbzvw5fVOnPRv7M2cm6HrvA9ojIDwAERHVjH2h3dhiqil6h0b53wSTvSuA8x/98jHgIhI6Cg4ioiIiMgRZWdn43A4WvY8Hs3YGCvDzVeD3Q5eL7hcGBjkR/4JgCd/WEWfQG8AkipNhKetpmffl6Axmtc+Dt7/ww8eZU/57lNVjoicIFMgEAiEehAnw+Px4PP5cLvd3/i+1WrFMAwsFsvpHVg7YDKZsFqtFBcXh3ooIiIi0pF4PJCeDmYzlJYCYPYPYEvYVn7zF/CkQ2wd1EdCZVgCm5/7F7t2pfL9STcyvGYbHySey70/eAlr30GhrUPkGHWG5+p2FxwPbdCeN28eHo/nuD5rsViYNGlSy3r9zq4z/IKLiIhIiGRkgNsNxcVgteLBg7XhIsqjarjtpWR2x5UT7ofyRBhcdhPPFPyM+BQvv7jgFvCHccePV9O/+9BQVyFyTDrDc3W7Warq8/nIy8sjLS2N/Pz84w6NEJydzM/PJy0tjby8vKO2lhYRERGRkzBtWvCf+cGuqRYsFET9A4AXry4nOboHAPHVsCF1DlePryHK1MjW1Djq4vw8VnhVSIYtIt+sXQRHl8vVEhi/GvYsFgt2ux2n00lpaSmBQOCwPyUlJTidTux2O2azueVzPp+vJUAWFRWFoCIRERGRDs5mCy5VdbuD+x0BO3Z+UTWVqkT4qP8e6mMjiPBDVD30G3kXAX8EkdE1+AyI3O9l4573Q1mBiHxFm16q6vV6ycrKatm/aBgGdrud8ePHt+xdPB6H9kIuXrwYl8vVEkKtVitOp/OwcNkZdIYpdREREQkhlwuystg+bTJJDz9DUljw2e3ig2extMvnWN+LIsHXQLgfquJhW246saMsWEY5iauG5pgknppaHtoaRI5BZ3iubrMzjh6Ph/T0dNxuN4ZhkJubS2lpKQ6HA5vNdkJ7FA3DwGaz4XA4KC0tJTc3F8MwcLvdpKenn9DyVxERERE5ApuNZZclcPWtrzB91y0tL7/a5T36lMWx5MIGfCnhAMTWwgVTP2XHZ1FUVXanJh6MfRU8u/l3oRq9iHxFm5xx9Pl8ZGRk4PF4sNvtOByOU9bMxufzkZOTg8vlwmKxUFxc3Gka55hMJsxmM1OmTDnqdWazGbvdfnoGJSIiIm2e2+1m9uzZOJ3Ob784J4erryhgzQi4r4uDqUnZAKysfo9R8ZfQd7uJQRsCJFdAfRRkbhvLwx9fytiLHiCmFkwBE7/78Wb6RphPbVEiJ6EzzDi2yeDocrnIyspq2b94OmRlZeFyuVr2RHYGJpPpmK7r6P8TiIiIyPE5rucmr5fV16RxzRuQFGbwYo9ihkcFj0mb/rGVv49ezKiSCBJ9TTSHQdcDMKrCyXu7HqFn7xJS98Ne6zn8c5RWhklo6Jk5qE0GR4CioqIT2sd4og7tf7TZbKfl57UFJpMJi8WCw+E46nU6B1NERES+yuv1kpaWhtlspvTLcxqPKjOT51KKuP8+GB5l4Y1eJQA0V/roX5VKmeFndvkjuDfPYk2jh8s8XXl1+xSGj/w7dc2xLLuslhd7FDM2xnpqCxM5QZpxlA6tM/yCi4iIyKlxXLOORUWQmcn1b3dl+aD9ZCfnkm3kATD//XuYdNFf6bM/hncSlvPT5eeQUAld37KyMTGWQUPexDsA4voP5Y0z1p7yukRORGd4rm6zzXFEREREpO3Kzc0FIP/LcxqP6sujOR6y7yeRJArK81nTEFx6OvGiv3DZB3Hs6FrHI+X3c5kxmapE6NF1MRu/OB+APpuj+MK/jmV17lNVjoh8CwVHERERETluh5rneb1eXC7Xt39g2jT6bYfs5RcAMP1AVstbs5qfJqESHu8xlxHDvgdAyQUBJiY8z2ef3kxkeAP918Zx39asb7y1iJx6Co4iIiIickKOa9bxy+Wst969nrExVtY0eCjw5QHQ/+Kb+dvzIwGYyq2M73sLDdHgH1fKkF4jqKrsSeX6UXwR7WWO7/FTUImIfJt2vcfxUEMbj8fD4sWLv/Ga8ePHY7FYTmujnfaiM6zFFhERkVPruPY6ejxgsbC9ycvVu9Kp8Pt4o1cJw6MsVH3sZvrHGTx1O5zVPJxB7+2mzFTG1Z+ez+/nzSBgCtDjL1l061LD4rQtJIXpuU7ajs7wXN3ugqPP56OgoIB58+bh8RxfW2aLxcK0adM6zXEb36Yz/IKLiIjIqXXcHVa/NKuigBkHc3go1cnkBDsAW3Oz+O51Lj4ZDVk11/PFypcwfBD+4cPMX3w+Xc56j6R7fstPYqZxb4+CU1SRyPHrDM/V7Wapqs/nIy8vj7S0NPLz8487NAJ4PB6ysrJIS0s7trX4IiIiInJUx73X8UtTk7J5o1dJS2gE6PnTXP74tyQSK028UfESVYlQlgL9uk0nNnE3NWstjHnBzOq3Z7Y01xGR06NdBMeioqKWwOjz+VpeP/QXlcPhoKSkhEAgcNifkpISHA4Hdrsds9nc8jmv19sSIIuKikJQkYiIiEjHcVx7Hb9ieNTh50RH9TZjuTSHnz4ZoCoh+Fp9jInP0/1c1vce6psS6VVew+CNMHXt5VT4fd9wVxE5Fdr0UtVDAc/tdgPBg+htNhvjx4/HarUeFgaP9X5ut5vFixdTVFTUEkJtNhsOh+O479fedYYpdRERETk9XC7XCT2ffZM116Txo3wve7tDykGIrYERq2Hl6jz82xuwjXyADYOg64U5zEx7+OQHL3KSOsNzdZsNjh6PhxtvvJF169ZhGAbTpk0jOzu71RrcHNorOXPmTHw+H4ZhUFJS0qnCY2f4BRcREZH2p2y+i2VPZnHzC+EM8DZjCphILg8w7p0R/Ondp5h28XcxYvYyd2IMH5yzS41yJOQ6w3N1m1yq6vP5yMrKYt26dVx55ZWUlpaSl5fXql1RDcMgLy+P0tJS7HY7Pp+PzMzMw5bCioiIiMjplzLRjtlk5ranmynrAgFTgPooqExdTfo5n+DeeBuNEXDOmjpu/fSXoR6uSKfQJoOjy+XC4/Fgt9tZsGDBKT1GwzAMnE4nNpsNj8ejPY8iIiIibUDPn+Zy8xzoWZ0EQFU8rB0GtyTNJKzfFnb0hb7bYUvV/7Gm6osQj1ak42uTwTE7O5vCwkIcDsdp+5lOp5PCwkId1SEiIiISQtubvEBw1jGqt5m8X1VQaUQSHoD9qeAZtpmo5goAypNhjKeRH33+4xCOWKRzaJPBEYINa07lTOP/OtR4R0RERERCY26Vi3E70phVETyjsedPc+m9CyZ93BuAxijwmmE0H1G2fxB1sRBXA93LlvDE5n+HcOQiHV+bDY4iIiIi0rkcOp6joDyf7U1eUibaiR1i4Ud/3EJkcjfC/bCvK+wcv5vm6hEAHEiFcz6Fgl2/DeXQRTo8BUcRERERaXWHjkE7HsOjLGQn51Lh9zH9QBYAfaYHty79/i+RNEWGEd0I2/rCaP889u4dTlMkNETBwPLNTF/xdGuXISJfUnAUERERkVaXnp5+Qh3rs408hkdZWFbnZmFNEQmjrSSMtjJg+U5GB0ZT1gV29oHSMyCyMRkI7nXschBeaP4bvtr6U1GOSKfXoYKjy+UiIyMDj8cT6qGIiIiIdGqHjjsrKCg47s/e1yU4yzjjYA4Q3OsIcHv+bir7G+zsA1+cCRcd/JDde86iKRI+32slsvcmfr/6sdYrQkRamAKBQCDUgziaoqKiYw6Cixcvxu12U1xcjNVqPbUD6wA6w0GlIiIiEhper5e0tDQMw+DgwYPH/fmf7MtkYU0R2cm5ZBt5lP4yk/LiIl78z/X8Ne0leuwGqxtit6QQ6FnG7p3peCyQMmw9y/rvICns9DVZFOkMz9URoR7A0Xi9XjIzM0M9DBERERE5TmazGbvdjsvlwuVyHfeRZ/d1cbCwpohZlTOZmpRNt5umUV5cxG0P7OGlZ8x4e3pZNxS+93kZn6cY9OxdQsIbv6BmeAkF5fkts5Yi0jra9FLVQ3/hiIiIiEj7k5sbXGKan59/3J/tG2FuaZQz42AOCaOtRPU2U/WxmwfLgh1U1w2F5ReE06M2uI9yUO+l1L57FbMqClrOgxSR1tGmgyOA0+lsCY/Z2dkEAoEj/jn0l5OIiIiIhN6hSQCv14vL5Truz09NyiYpzGBulYs1DZ6WvY7nz/wQGzbqY8BzTjO9dkFzIIqqyp6U/esuGryDKCg//rAqIkfW5oMjgMPhwG63M2nSpKNeZ7Vayc3NxWw2n56BiYiIiMhRTZkyBTixWcekMKNlyWlBeT7JGTbCEw3Ki4t4tqqABH88O/rCBxfC0B0R1MRBU10ie/74KC+WLtCso0grahfB0TAMnE7ntza8sVqt5OXlKTiKiIiItBFWqxWr1XpC5zoCTE6wMznBztTEaYQnGqRMtNNc6cM/r5BHwx4jrBk+Og+SdtcwePBiRmY8gr82Ed9/pmrWUaQVtYvg2Fl5vd7jPvtIREREpK05mb2OAA+lOhkbYwWg203TANg3ZyZ27IxcE0ZKGcy7DvqvrGHg6H9zxfBHGL19F8+7N2nWUaSVKDi2UT6fj4yMDNLT03UupYiIiLRrh2Yd3W73Cc06flVUbzPJGTYadnopLy5ijDGBqEb4YiikhEFCczKWvvOwDnTS6LqVi1+bhq+2vnUKEenEFBzbqKysLLxer2YdRUREpEOYMmUKVqsVwzj58xW/Ouv4994vEAgPJ+UgvPR9OGtTJPv7BoPi+N4vsePlTO7/8LWT/pkinV27DY4ej+ekv7FqqwoKCigqKgr1MERERERajd1up7i4GIvFctL3+urRHNF7fNzV+y8AVCXCwab9BLp1pT4KLL3fpHdFJc990nEPZRc5XdptcMzJySEjIyPUw2h1Ho+HnJycUA9DREREpE07dDTH7qfyuTVlOomxPUmogXmTYOg62NMjeJ31DCdV71t5YOnCEI5WpP1rt8GxI/L5fGRlZQFgs9lCPBoRERGRtitlop3wRIOy+S4adnr5Wdc/AFCdABX1+6mPjmJLf+jTvYS+zbt4qPjtEI9YpH1TcGxDcnJy8Hg82Gw2pk2bFurhiIiIiLRJFX4fsyoKiPnRT4HgXscbU35GTHgCKQfBNQVSdjQSCIPKRLAOepaDb03i58VPhXjkIu2XgmMb4XK5cLlcmM1mnE5nqIcjIiIi0mbNOJjDjIM5vDqRllnH5kofv+hxPwDhAag1AoCJykTol/IZPRI28HRBt9AOXKQdU3BsA766r7GwsLBVuo2JiIiIdFTZybkkhRk8UvtXtt45ieZKH/v+VcDN3bKJD08m5SAUZULXqlgCYVCRBBed9QRNB3pw08v6gl7kRESEegASPHrD5/ORm5vbKp3GjofP52u17rRmsxmz2dwq9xIRERE5kr4RZh5KdfKTfZk8MOYd/hoPZa/Opuftedzdu4D7tmVhlMPaATV0OwBVCTAkYSXREZW8vnwXfD/UFYi0PwqOIXZoX6PVaiUvL++0/3yPx9Nq3Wlzc3NDUoOIiIi0P0VFReTk5DBt2jSys7OP+/MT4mxMTrAzt8rFol8MJfMv6ygvLmJihp0F5f/m+W5vsmUA/MQVTXVUPfUJTaT3L2LZsh/yx+Wv8Psx3zsFVUl7YjKZQj2EdkXB8Sha42iMKVOmYLfbv/G9oqIiCgoKMAyDwsLCk/o5J8psNjNlypRWuZfVam2V+4iIiEjHZ7FY8Hq9zJw584SCI8B9XRwsrCli9th1XNgdUtzzSM6w8XjaG6zcncbyBC+eofUM3gwHUmF7XxNshr89Uc3vx7RyQdLuBAKBVrtXZwihCo5H0RrLOMePH/+Nr3u93pajN0K5r9FsNmuWUERERE47s9mM3W5vaRB4pC/ajyYpzCA7OZcZB3P49y1R/OJhF32mOwhPNHgw9lEymq7jg4vhzLUQiAbryGd5cfXlVG4cyFvrNnDl0MGtX5hIB6XmOEdhtVoJBAIn9edIoSwzM7NlX6Nm6kRERKQzOrTqafbs2Sd8j6lJ2fSNMPPOJQ3s6Q7lxUUAXJx8LZfuHApAyXnBa/2BJoZd8BwAv5qz9CRGLtL5mAKtOUcrx6SgoKBlCeyRQqPP58Pj8QDBpRxfnZF0OByt0kTHZDJhtVopLi4+6XuJiIiInIiMjAzcbjfFxcUn/GX63CoX0w9kcek7cPdCC0NeLAHA43MzNiaD+hiw/zOCgL+JxnB48fk38dcksvq1Xgw3zmjFaqSz6gzP1VqqGgJf7Tx6LEthDwXIQ3w+XyuPSERERCQ0pkyZgtvtZvbs2SccHCcn2Ckoz+fdy7xc/5KH/us9xA6xYDGsjCntz5K0rawb2MSQDWAKj6D/8Dfwfnw92UufYOG1D7ZuQSIdlJaqhoDNZvvWJa5f/baiuLj4sPe0tFVEREQ6CrvdjtlsxuVy4fV6T/g+2cm5ALx2LeybM7Pl9d/G5hNdB8suhOYevamKa2JgUvBL+Q8+iGJZnftkhi/SabTr4Oj1enG73bjdbs3CiYiIiLRT06ZNA2DmzJnfcuWRTU6w81CqkzsWmCmb76JhpxeA7/S0M8qbSkwtuAfvBKDbOcuJjK6k5uOL+dvOv570+EU6g3YdHF0uFxkZGWRkZHxtOaeIiIiItA+HOqq6XK6Tus/kBDsp1wUb7pTN/++9kprjGfIF7OkH25NiqY1oYNyZz9I/egNLlprY3uQ9qZ8r0hm06+DYEXm9XvLy8g7rLjZ79mzy8vJO+mgQERERkbbIMAzsdjs+n++kw2O3m4NnQn51ueqk1OARaCllsGlUE1H1cEnPV7CNeADff6Zy387fntTPFOkMOlRw9Hg8LUtX3W73Sa2TDxWv10t+fv5hf2m6XC7y8/MVHEVERKTDOrRcdd68eSd1n/BEg5SJdporfS2zjhNT7AB02wsV8Y3sHtqFygQwYnfTt3kXb6xeT4Vf255EjqbDdFXNycn5xuWqFouFadOmYbPZDjvSoq2yWCxHbOP71W6sIiIiIh3JoWeg1mgC2O2maZTNd1HunkfKRDu9o8xMTLEzv8xFt32wemAtaSWQWAWW3m+ycMH3+cPQGcxMe/jkCxHpoNr1OY55eXnk5+cf07Vmsxmn06mOpF/RGc6bERERkc5pzTVpNOz0Mvz1UqJ6m6ls9nH56t7UUMv6oXDemmQuebOc6AYoeO9lUp6cwuZB1aEetrRTneG5ukMtVc3OziY3N5fc3Fyys7MPm6Hzer1kZGSQl5cXsvGJiIiIyOnR7abg0tfy4iIAEsMNsrr/hvAA9NwNK/uWs68rVMeBpfcb1GwYwv2bNeMociQdIjgahkFpaSkOh4O8vDzy8vJwOByUlpZ+bclDfn6+OrCKiIiIdHDJGTaWjYF7Y+5vee3mbtlEE0OyD+KApig42CW4XLVubTpO/x+011HkCDpEcHQ4HEfc/3doytjhcLS8djJnBImIiIhI2xfV28y/p8SyaHQZL25/CAjOOl5qfJfwAATCYJs5kqZIMPXYzaC10fj/n717D4/rru99/x7d71ryJZZjxVkihhiHxGsCFDcJeE0A70AvGhUXegON0tveZVNLZ9PTfbr3RqO0m6ftodUY6GlPd5sZl31aSl00hhJaFZgRSYtDIFohiTGJk1l2bMeJY2tJliVZljXnj8kMduKLHM1oNNLn9TzzRBmN1vo5T+RnPvP7/r7fykn+x+EHirxykaVpWQTH+TSN6enpydUcx+PxAq9IRERERIrt91/6OAD/c/pTuZ3E0A2/A8C6E/Do288DMNYMb2t8hJljN7Pv/F9orqPIZSyL4DjfMRW2bRMMBvE8T6MtRERERJa5be/9b3xs9pc5UznFg+MRAG6ttbi58s1UZzIjR8wK5sqh5aYn2fCNe6F6iv/2zB8XcdUiS1NJB8fs2cXdu3fP+9zi1q1bC7giEREREcmXZDK5oN4U5Y0Gn2z/PAAPnvnxUaVfbf09Ki+U0zAB3337LABnGuGOse8BMJz+0gJWLbI8lXxwtCwLz/Pw+/3X7JjqeV7ufKNmIoqIiIgsXY7jEAgE6O3tXdB1msoMdjaEGJ/z2DsRA+BnV4X4k4a/oPUEnG2AY+t9zFbCi6yleuRnoOEUv/uDz+bhTyGyfJR0cATo6+vLfd3f34/f7ycSieB5l3bEcl2X7u5uPM973agOEREREVlaLMvCNE2SySSu6y7oWj3NmfeLkbEfz/9+z1t+jbe5Daw7AT/anBlrPt10norEBwH40ap/WNA9RZabkg+OwWCQkZERDMMAMp9O9fb20tLSQiAQyD38fj/xeBzDMC4JmyIiIiKyNO3alZnFGIvFFnSdtgqTbTU2R2fd3K4jwC+s/jitJ+CFjTBZU8ZG82FOpGrZUmXhXHiE/dPJBd1XZDkp+eAImU+kEokElmVd8nwymcw9sjuQ0Wg0FzJFREREZOkKBoMA7NmzZ8HXutyu4463/1ducctp9uCp2+cAuOUtD7H+oV8F4JOnuhd8X5HlYlkER8iEx5GREVKpFNFolFAohG3buUc0GmV0dDT3F5CIiIiILG2maRIMBnFdd0FNcgC21div23WsqjPYPvOTtJ6AQ5syr9v0lod4/JH6y+5QiqxkyyY4ZpmmSSgUIhqNkkgkco9QKKSdRhEREZES09HRAZBrcLgQ2V3Hoal9uec+fMfvs+kQlM2BsxWe+uGHePrwen6LB4BLu7GKrGTLLjiKiIiIyPKR/fA/Ho8v+Frbamz+cu0gn1kdzT3Xutnm9kO1mC48YcGzrU2cn2nk2//8HFuqLA7MOByYWdhup8hyoOAoIiIiIktaMBjE87wFN8kB2FEXpKns0iq0mzfcRcMEtB6D6Z/MhMR/ePgl7m/MNOfRrqPICgyOsViMQCCw4Dp5EREREVkcXV1dQH6a5FzO22/5MLOVsPYU8J6HMVoOsaV2H2e+OkhTmcHXzw7y0HNPF+TeIqVixQVH13Uv6bIqIiIiIkubbdt5m+l4Oe+88zdoGoOyNLSMVeBte4abm5/k8DNf4d5z93I2PcZvPfaZvN9XpJRUFHsB+RKLxeb1F8nw8HDhFyMiIiIiebVr1y76+/txHAfTNPN+/Q+euJMvNj/O+hdmGf3wl9j/+z+PfUuUuw6vJb4JZjYNEXvsaULvvC3v9xYpBSUfHOPxON3d3dpBFBEREVnGenp66OnpKdj1d974CQanuqEW6tcf4tGmX2Pb+QZ++J0vcOvNb+VHa3/IJ7/8BYJv68eorS7YOkSWqpIvVe3v71doFBEREZEF2XRPiPd8rxaAtqMwff/f4xz/IOkLk+x85a7MizZ/k/6h7xRxlSLFU9LB8eJhsD09PYyOjpJOp6/66OvrK/KqRURERGSp2D+d5MHxCAAdtR+hegpqzkFz+wgV/kd5ZTW8NPwN1pffTMOW7/E5519JPvdCkVctsvhKOjhm5/mEQiEGBgYwDOMaPyEiIiIi8mOfPNXNA6O9HJ112ejv4O3fzzzfKl2XBgAAIABJREFUPF5Gk3GUiboyzs0c5rdm7gfA+Ikhuv/+n/GmzhVx1SKLr6SDY7ZENduieT7C4TDpdBrbtgu0KhEREREpFT3NmWq0yFg/G+8McvuRJgBaRuc4dOsFKJ9jsg54zKWtwqRhy/d44bxL5OHvF3HVIouvpIOjiIiIiMhC7KgL0lRmMDQZZ3zO4+3W/bQeB3xwojXzVvlMIzxz8O9yIbPJepjdDz+uXUdZUUq6q2q2NHXfvn3aQXyDHMchEAhc9TWWZTEwMLBIKxIRERFZPE1lBvc37iIy1s+D4xE+dncXt/99hBM3QtPYHCdaqmgdnWG2apo3vVBJU4NB+dse5/mHO4g8/H3CO+4q9h9BCszn8xV7CUuCL51Op4u9iDfK8zxaWlowTZNUKjWvn0kmkySTSUKhUEFmAJWS+f4S2LZNIpEo8GpERERE5i/7ni4cDi/4WkdnXe451k5bhckjG1Ls/Z12/vlWl2feAifWwl3fhYYzcEfdu3im463snYgxNfwrzDz7LlK/9+saz7HM6T1zRkmXqhqGQTAYxHVdIpHIvH4mmUzS39+P67qFXVyJsG37mp1ol/MvgIiIiJSm7u7uvL2na6sw2dkQ4uisy96JGBvvDHLPv8HqCy3M1MJMJUw0wosNk9zfuAuA2+9+lsR/+rBC4wpwrffKJbwPd11KulQVyO0a9vb2cvjwYZqbm6/6+uHh4UVYlYiIiIgU0q5du+jt7WX37t15OVJzf+Mu9k7EePDMbr70/kEODEVoP1rByUo4sAWsJ+DQuSdpT5tsq7HZP51ketUB4IaF/2FESkBJB8dYLEYsFsv9+3x3HUVERESktIVCIXp7e4nFYnkJjluqrFwgfKrFZdVGiw2OQ8VGqFh7I3AcgIcP/hU9t/bxC9NJImP9fLHGXvC9RUpBSZequq6bG8khIiIiIiuHYRiEQiE8z8vN9l6obBnqg2d2s+nuLlafhlXpVfDicQ6tq6d8Dr584A/YVmPnQub+6WRe7i2y1JX0jmNWKBTi5ptvntdrh4eHSSaThV2QiIiIiBRcV1cXsViMPXv2EAwGF3y9HXVB2ipMhibj/Bf/f4G/g9sP1fKtP/8G6XQlm3ZtZ2J2jNPjLj3NmV3HB8/sZpt2HWUFWBbBsaura97jOMLhsIKjiIiIyDJg2zamaRKPx3FdNy8d8z/VMsDQ1D7Wt7yNVRstzj3mYLz5hxze+5/4VipExUdj/M33e+gJxHMh8+isS1vFwu8tspSVdKlqKBQikUhgWVZBf0ZERERElqauri6AvJWr7qgL8pnVUZrKDDbd3UX1DNz/iwka7niEY5HPcHj4YzzifY2pc16utHXvRCwv9xZZyko6OJqmiW3bGIZR0J8RERERkaUpFAoBsHv37rxfe+OdmfLXC6ce45aoTet//u/M/caDfPfM3SSe/Bw/U9EJwN6ze/J+b5GlpqSDo4iIiIisbKZp5uZ65/s4UsMak1UbLdZ/9wUAVn/wCwDUf/Fn+O7XPsVzPxhkR12Qo7MuQ5P52fEUWaoUHEVERESkpHV0dACwZ0/+d/423d1FzTmwpjZTVn+W1V2f5cVHMzuRyW9/mp31mVLZoal9eb+3yFKy4oJjOBzG5/OpQY6IiIjIMhEKhTBNk61bt+b92tly1bc65wC48bf/D8Zsh4MHO5ieOskd4yZNZQZDk3HG5zQmTpavkuiq6nkejuPk5VqHDx/Oy3VEREREZOlIpVIFuW62XJVHHYyfbMFjlNpP7eLgx/8rmzfv458e+jN2dATZOxFjaDLOzoZQQdYhUmwlERx7e3uJxWLFXoaIiIiIrECb7u7iu0ccOsffS7RpLxt9xzj4oaeYGG3k0LP/wL2HvsPe1hiRsX4FR1m2SqJUVaFRRERERIoh4oX54K29jBrQ/o1DVFBJTRqsu/4Xr9xyhgurxvjbP/tndjaEODrrajSHLFslseMImY5Z2Tk9CzE8PKzzjSIiIiIyL01lmRFuz7ynlZavONxd+X6Gz/8r1NUBE0zVwprVu3nXE99h7y3adZTlq6SCYzgcXvB1wuGwgqOIiIiIzMvOhhAPjPby/dtneNdX4EPHf5Lhtf/K+blpJuozr7lp1WH+8a++zs7PhXJnHXfUBYu7cJE8K4lS1UQiwcDAQF6uFQqFSCQSWJaVl+uJiIiIyPLVVGawsyHEy5WnGbHAe/grtPk2coFZXrqpGoDJOmhd9wB8+eOARnPI8lQSwdG27bwFPdM0sW0bwzDycj0RERERWd56mvsAePi9VZw+4vDzr85uHJ+dBeB0UzmGcZiv/EkZrZO3s3ciptEcsuyURHAUEREREZkvx3Ho7u7Gdd28XK+twmRnQ4jTjTOMWPDO51bx5umNtMxeYKIO0lUXuFAGq1YladnXD8DQZDwv9xZZKhQcRURERGRZcRyHWCzG7t2783bN7K7j8HY49G97+MiGXgAmWmoBeHSTwaPf3cUP/vI+5sabiYz15+3eIkvBiguO4XAYn8+nBjkiIiIiy1QwmGlME4/nb9evrcJkR10QrwW+X+bw7sp7aagwSNdk3k6n13i87wNPcPxIFU1fGODorMv+6WTe7i9SbCsuOIqIiIjI8mYYBsFgENd187pZsPPVs41PbIVTT3yLe9YEOXfhLFN1ZWw4DpUfu4/m5jkO//UvatdRlp2SCI6RSASfz5eXR3+/foFFRERElrvs/O89e/bk7Zo76oLc6GvD8cOT332QnRt2ATBtZMpVx1tP8s67nmRirJKab/4q+6eTHJhx8nZ/kWIqieDY29tb7CWIiIiISAkJBoMYhpHXclWADzf9KgD/3vgkrdMGlmFz1ncWgIazsP4DvwnAsd//febGm9l7Nn/BVaSYKoq9gPkyDOOyIzk8z8NxMp/kmKaJaZqX/XnHcfA8D8MwGBgYwLbtAq5WRERERIotGAwSi8WIxWKEQqG8XPP+ph5ueeIsp5zPcOStce67owvHS3KwBZ66B1o3fY+f6niOr+27hYbY77K354/5VEt+5pGLFFNJ7DgCWJZFIpF43SMbJi3LYmRk5LKvyT4Mw8DzvCuGSxERERFZPnbtypSS7tu3L2/XbCozCNz2cSDTXfW+1hA1lU2k18FcGTy3CW7/hd8CYPrL9zM+52k0hywLJREcbdu+7G5jMpkkFothmmYuGF6JZVlEo1FApa8iIiIiK4FlWZimSTwex/O8vF23YY3Jqo0Wp484zEx61Bk3cq4Gth5uAeCrm7/Jzp3/i/EX1jB79GaGpvIXXEWKpSSCYyKRYGDg9Vv82S5ZfX19Vw2NWcFgENu2cRxH4zhEREREVoBsk5xYLJbX67ZutgE48nicX7nh1U2JyUkqzsO7H4Hb3vqfaG52qfrm/eydiHF01s3r/UUWW0kEx2u5ntLT7du3F24hIiIiIrKkZM825rO7KsCmuzOB9MjIPn5uzW9QSx1TFefY8GIFI/7Mazbfuo+ZL2ea6Tx4Znde7y+y2JZFcHRdd96vzf6lMZ8dShEREREpbaZpXvHY00Ks2mjRsMbkyONxZiY9ttW/F4CGFy9wcHPmNe/6iSjHnmql8uA97J2IMT6Xv3JZkcVW0sEx2xl1vrMZY7EYrutiWVbe//IQERERkaUpkUjkel3k08Y7g0CmXPV3Nn4WgOqKNDNVcGIdtLQ8RXOzy+yn/5rxOY+9E7G8r0FksZR8cDRNE9d16e7uvuprHcfJNcXJ1rqLiIiIiLxRm+7uYqoG/u6Vz3FjlUlbucmFCrjphQqevi3zmg98YC/uv93C9P7tKleVklbSwREuPfDc2dn5uq5ZrusSiUQIBAK5OY75muMjIiIiIivXqo0W//ThOv7a/zhPjD/Mh9dmxnTc8EqaW56Hs3Xwpjd9HoC1yV6OzrocmHGKuWSRN6zkg2M4HM4FwXg8TmdnJy0tLfh8Pnw+H+3t7fT29uZC47XGdoiIiIiIzNf2uXsA+Jsjf0Dnml8DYLLmAgAn10Jl+VFuvjnJxP67ANh7Nr9NekQWiy+dTqeLvYh86O3tJRKJXPH72dCos40/5vP5ME3zmqW7pmlql1ZERETkMg4feZjt6fdQe76SH26a4ZcOvp0D5x7nzc/4qJ5Os+l5OHJ0J9HoF1n3/72XG+56gh/cNFrsZUue+Xw+bNsmkUgUeykFs2yCI2TKUnfv3k0sFsuVq1qWxa5duxR8LsPn883rdcv9l0BERERkIXb+cyPfe+sEf9b0vzl7YYxPH/s4La/4uPlomoZxWHMaIp89RNNt05R94W18ZnWUnQ2hYi9b5knvmTOWVXCU6+Pz+bAsi4GBgau+zjAM7dSKiIiIXMHn/+Vn+czmr/KB6Xv5403/yLufaqFxDG5JwVgjbH0SDvzw9/iHvQ+wYfgW7tnUzhfXLd+AsRKthB3HimIvQIrLMIzcWBMRERGR5c5xHHbv3s3AwEDe+l787Nr7+fzUV/l67bf4Ix/899UD/D+nMt38yzPHHXnTpn3AAzR+67fY3/a7HJ11aasw83J/kcVQ8s1xRERERETmKx6PE4vFiMViebvmxjuDWK82Sx2ajHPPmiBz5XChvpaGSfjsJ+DozfUAnIr+JgCRsfnNIRdZKpZscGxvbyccDl8yWkNEREREZCGyfS/27Mlvd9OfO7sDgD899d9orTHZ1GAxWjMFwKZD8PQ7vsuHPzLKySMNzH75PzI0Gc/r/UUKbUkGR8dx8DyP/v5+2tvb8/qJkIiIiIisXKZpYlkWjuPgum7ervu2mz7A5h/CcY4zNBnn3tZf5qV18PJa2HgEDmyBu+77IwBmYv8n43Meeydiebu/SKEtyeBoWRapVIpQKITneXR3d9Pe3k4ymSz20kRERESkxO3atQuA3bt35+2arZtt3vVo5usHz+zmnat2cL4qExwbzkL9Wfj22j/H3u7j5NMbmT16M0NT+/J2f5FCW5LBETJNW6LRKKlUCtu2cV2XQCBAIBDAcZxiL09ERERESlQwGAQy5x3zZdVGi9snTMwUjM95rKveyNqyVmarYLI2U67qvPks77zrSQDqHvsQQ5Nxxud0LEtKw5INjlmmaZJIJEgkEliWRTKZxO/3093drfOPIiIiInLdDMMgGAzium5eNyTu/cQg//S2FA+tH6GpzOBnW7oAOL6ujOfb4flboPb2vwDg1O7fA1C5qpSMJR8cs2zbZmRkhGg0imEYxGIxNdARERERkTdk+/btAHk9CrVqo0XDGjP3759o+0PK0mWcbZqj9UTmuX/Z+Bd89FfOc/oFg4m9H+PBM/krlxUppJIJjlmhUIhUKkVfXx8A/f39+P1+NdARERERkXnLlqvmu7vqa22q3Ey6DDaMNwLw3Jtg23tCmW/+zf/g6KyrDqtSEkouOEKmvCAcDjMyMkIoFMJ1Xbq7uwkEAmqgIyIiIiLXdHF31UJWrwXX/BoA09VztL4I7/0WvPzC33Pfffs49XQ7s0dvZu/ZwoZXkXwoyeCYZZom0WiURCKBbdskk0kCgQCdnZ15ba8sIiIiIsuPbdtAfpvkvNYvreuljHLGy8+y7gTs35Z5/h3v+DwAZV/exdBknKOzbsHWIJIPJR0cs2zbJpFIMDg4iGmaxONx2tvb6e3t1flHEREREbmsrq4uDMMo+PvFTVVbSJdB0zE4tgG8Zij3JVh3g8crsd9gbrxZ5aqy5C2L4JgVDAZJpVIMDAxgGAaRSIT29nYikUixlyYiIiIiS4xlWYyOjtLT01PQ+/z0qo8BcK65jPUvwsHNmefvv/+LTI3VMLG3S+WqsuQtq+CY1dPTQyqVoqenB8/z6O3tpb29vaBlCCIiIiIiFxuf89g7EeN9q34egJmGOTY9C46V+f6qtX8FwGz8P3JgxlG5qixpyzI4QqaBzsDAAKlUKjenp7Ozk0AgkNd5PSIiIiIil/PAaC+fPNXNv59L8N76DqqnYd0rFfgfz5SrTngO1lYfZ55+C7NHb1a5qixpyzY4ZpmmyeDgIIlEAsuySCaT+P1+uru71UBHRERERAqmpzkzPi4y1k+/GaNmBipm51h3Eg7fnHnNRz/6BQC8z35KMx1lSVv2wTHLtm1GRkaIRqOYpkksFsPv9xMOh9VAR0RERETyrq3CZGdDiKOzLv88HeeeNUHO1M8BMFnnA8DXMoBpwtl/7MJ10+yfThZvwSJXsWKCY1YoFGJkZIS+vswnQP39/bS3txOLxYq7MBERERFZdnbWdwGw9+we7lvXxURD5vnmsTTT1XDq6A/47f88BsDkUId2HWXJWnHBETLnH8PhMKlUilAohOd5dHd34/f7Vb4qIiIiInmzrcZmS5XF/ukkpmGxptHkXBXUTcETd0DFbJq1rf8vAL7HPqCZjrJkrcjgmGUYBtFolJGREWzbxnVdDMMo9rJEREREpAgcxyGZTOb9utldx6HJTLnqdE3m+fGmzD+fOftnmCacHnq/muTIkrWig2OWZVkkEglSqZSCo4iIiMgK5DgOfr+f3bvzXyq6oy4IZMpVd27Yxdn6zPM3nITILojffZJf+qVzAEz8o2Y6ytKk4HgRhUYRERGRlcmyLEzTJB6P5/3oUluFyZYqiwMzDrMVsHG1xfkKaB6H85U+ftQ+w70/ldllPBvr1UxHWZIUHEVEREREgK6uTElpPJ7/UtGLy1VvaryNVDucaYBbD6aZqYa/TP9fBDt8zI43MnNgq8pVZclZccExHA7j8/kKUr8uIiIiIqUrFAoBsGdP/ktFLy5XXVXXxmQ9jLaAeTjz/e+tPcLWO48DML1/u8pVZclZccFRRERERORyTNPEsiwcxylYuSrAJ9r+EN8ceAY0TED92TKevwUa2v8RgLUv3c2BGYcDM05e1yCyEMsiOMZiMfx+Pz6f75qP/v7+Yi9XRERERJaoQparPrR+hIfWjwCwoXwjc+Uwe+N61p2YA+CxN/0po6+U8z8/MwmgmY6ypJR8cAyHw3R3d+M4+kRGRERERBYmGMyUlBaiXPVi2xreB4C3tpyNRzLPfW/tEaprPXbUBWkqM3TOUZaUimIvYKEubpnc09NDc3PzVV8/PDys840iIiIiclmvLVc1TbMg9/m1G/8HXz7wIMfLj3LTBNRPlnFq9RxDI39Mx7ZPs6MuyN6JGHsnYuxsCBVkDSLXo6SDYzwex/M8DMNgZGRkXr/Y4XBYwVFERERErqirqwvHcYjH4/T09BTkHq01JuvL2zjGUVpvuJN1Lz7OR/83fLf2T+jY9mnub9yVCY5n9yg4ypJQ0qWq2fLUgYGBeX8aZJomtm1rZqOIiIiIXNZilavea3QCcHDqWTYegYO3QuXUDAcPxtlSZdFWYbJ/OqmZjrIklHRwzLqeEoJQKEQikcCyrMItSERERERKVrZcNd+dVV/rNzc8AMBk8yR1x+GHmzPPf/t7AwDc37gLgL0TsYKuQ2Q+lkVw9Dyv2EsQERERkWVkcHCQ0dHRgt6jocJgnW89F8ousGHD25lohOlqOP7ct5me9nIlqprpKEtBSQfH7K5hocsIRERERGRlKVRTnKzxOY+9EzG2NtwFwETLNBuPgPNqUdwPnvpbmsoMdtQFOTrrqsOqFF1JB8dgMIhpmrkmOfMRDofx+XxqkPMqz/NIJpNXfWjUiYiIiEh+Rcb6+eSpbjYaWym7AKcmDnPTiUp+dKsPgG/92+8DsLM+M1dyaGpf0dYqAiXeVRUyXa/6+/sJBAIkEgk1vblOjuMQCASu+hrbtkkkEou0IhEREZHlb2d9Fw+OR/jBhcf5YHWQH6bilM3AzS6cWAetL51gevo1Mx1XR4u97BXJ5/MVewlLQskHx7GxMSATgPx+/zXLCgp9yLnUmKZJV1fXNV8jIiIiIvmT7Zo6NBnnT1f9GY/XxmmcgPUn4PBGaH0Jvva9B/jQPX/Kthqbock4B2YctlSpweNiS6fT13zNSgiXJR0cw+EwkUgk9++u6yoYXifTNAmHw8VehoiIiMiKs6MuyIPjEV6qHWOyHtKnyqicmWOiNvP977zwJT7En7KjtoOhyTh7z+7hUwqOUiQlfcZRRERERKRUZcdtfHXqS9yzJshE3RxlwJrRTHfVisPHgEzABNQgR4pqWQTHRCJBOp2e16Ovr6/YyxURERGRElOIZoFtFSbbamwOzDjcvMrP1Ks7jdUz8MLNZdScg4cOffaS7qoHZtS0UIqjpIOjaZrYtn1dDXHeyM+IiIiIyMrV2dmJ3+8vyJGobNfUpyt+xHRN5rnq82UcuclHZBd8oeVrAOyo7QA001GKp6SDYygUIpFI5OY5FupnRERERGTlyjYKLMQ4t2zX1G9NP8Qdq23O1oFvbo6WUxcYM+Cbtf+eex2oXFWKp6SDo4iIiIhIoWU70O/bl/9Zik1lBttqbMbnPNpXv4PTq8BrhropaDvi42TdBA7OJeWqCo9SDAqOIiIiIiJXYVkWpmkSj8fxPC/v18+Wob5SPcGpNXD8Rqg4B2teyoyB+JOxTwE/Lmsdmsp/gBW5lhUXHJPJJOFwWGM7RERERGTegsFMqWg8nv/dvm01NgBTZdMYc83MVMNMLWw4kfn+v1QmgB+XtWrHUYphRQbH/v5+BUcRERERmbdClqu2VZg8siHFZ1ZHeXfTBwEYv6GG6hm46YWyXLkqkCtrVXdVWWwVxV7AfDiOQ29vb16upcAoIiIiItfrteWq+e7Q31ZhAtC1/r/y1Wf/jtPGHKsnDdadnOCFm+b4k7FP8YXmr7CjtoOhyThDk3G2VKnZoyyekgiOfr+/2EsQERERkRXOtm1isRjJZDJXuppvm+ruwJhrxisbo23de/Be/AYA35r7FvDjstahqX30GOGCrEHkclZcqSpkfumzbZVFREREROajoyPTxKYQ5aoXy5arHjh/iMpZCHzTx69/9iwPHRygrcJkS5XFgRmH8bn8N+oRuZKS2HGETHnAwMDA657ft28fkUgEgIGBgSvOZ9yzZw+xWAzDMBgYGFBwFBEREZHrEgwGMQyDeDxONBot2H2y5aonqo9xwwTUvLrV88iP/ooPbu5lW43NgRmHock4OxtCBVuHyMVKJjgahoFt25c853kenZ2dAESjUUKh0BV/3rZtPM8jHo8Tj8evGDBFRERERK4kGAwSi8WIx+OLUq56bm411WWnmK4G38GD0JEZy/HgeIQHz+xWcJRFUxKlqul0mkQi8brnY7EYnucRCoWuGhqzotEohmGoq6qIiIiIvCG7du0iGo2+bkMj395R9x4AVvlvoHIWTrypnurpOf7h4B+wpcrKlasenXULug6RrJIIjleSHcCabY98LYZh5AKmgqOIiIiIXC/LsgiFQnnvqnqx8TmP9637ZXxz8PyFQ9RXGow2zgLw6ME9QGbXEdBMR1k0JR0cs7IBMt+vFRERERFZbHe80MJnp/6QprkG5i6cZ13DmymbPse5ah+VB5/Dw2NHXaZM9sEzu4u8WlkpSjo4Zhvc9Pf3z+v1yWQy1yBHZxxFREREZCnKlqHuMD7MxiNwOvUYlefh+IYKqs+l+Tv3D2mrMNlWY3N01uXAjFPsJcsKUNLBMXsg2XEcuru7r/pax3FyjXSyHbFERERERJaaHbWZsR/U1zNZl/ly7hScqzgPwLB7abnq3rN7Fn2NsvKUdHC8+MxiLBaju7v7smcXk8kkgUDgus9EioiIiIgstmwZ6pO+J6mqN0j7fNRVlTNXnvl+jXsCFzf3Op1zlMVQ0sERMp2tsruHsViM9vZ2uru7CYfDhMNh2tvbLwmNoVCo4F2wRERERETeqC1VFm0VJvunk2xd8z4m6tOUVVygqqqByTof5mGIE6epzGBHXVDlqrIoSj44WpZFIpG4pPQ0FovR39//urEboVCooMNaRURERETy4f7GXQBMNpZzrjrz3PrKjXjNaQD+5eBngR+XtapcVQqt5IMjZMLjyMgIPT09lz27aFkW0WhUoVFERERE8iYSieD3+wsy5m1nQwiAR+e+kzvnOD3xCmcaYf+9dXynNXVJuer+6WTe1yBysWURHCHTYXVgYIBUKkU0GqWvr4++vj5GRkYYGRnJnYUUEREREckXx3GIx/N/xjBbhnr8whFuuvFdnK2DM9MvM1tRzeE1M4wZkCRJU5mR68I6Pqexc1I4FcVeQL5d3DCnFCWTSZLJ5CXPhUKh3OgREREREVkagsEgvb297Nmzh56enrxff2d9F0OTcebqapiqBV8aJlPnaF0DB98K+9hHiBA7ajs4MOMwNBnP7VSK5NuyC46lqre3l1gslmvic7H+/n5s2yaRSBRhZSIiIiJyOaZpYlkWjuPgeV7ex71tq7EBeMb3LOdvhLly2DxWQeX4LC3T9cRr4nh4mdeN9bP/3LCCoxTMsilVLWXd3d1EIhE8z8udx0wkEiQSCQYGBjBNk2QySTgcLvZSRUREROQi2W79hSpX3VZj89LccSqoBOBs6ywNc/Xc8OIskClXzQZMnXOUQlqywbG3txfHWby2wo7j0Nvbu2j3y+ru7iYWiwGZktTseUzbtrFtm56eHoLBzKHn3bt3X3ZHUkRERESKIzsffN++fQW5/mdWR3lkQ4o3l98KwHgTmA230fzyucx9ydw3O5bj6KxbkHWILMngGIvFiEQiBAKBRQmPjuMQCASIRCK5ELcYkslk7n7BYPCyXV8dxyESiQDged6ihmkRERERuTrLsjBNsyA7jgBtFSZtFSbvb/4QvjkYM+C9t/02609A7WwVcTL33Va9HYChycKsQ2RJBsdQKEQoFMLzPAKBAOFwuCA7bZ7nEQ6HCQQCeJ6Xu+9iuXiHs6+v75qvNwwDy7IKuSQRERERuU6FLFfNsgybyvOZr8/UZL5oPV6Gh0eSZG4sh+Y5SqEsyeAI5EZqeJ5Hf38/7e3thMPhvMzJcV2XcDhMe3s7/f39eJ5HX1/fos55dF03t3uYPVh9OZZlMTg4SF9fH6lUKu+HrkVERERf2JlnAAAgAElEQVRkYTo6OoDClatCJjhWZI418rUX/44X98PmJ6f5yBfhK9Nfoq3CzI3lULmqFMKSDY4A4XCYkZERbNu+JEB2dnYSi8WuK0S6rkssFqOzs/OSwGjbNiMjI4veeObikRvZT6ku/l4ymcztsgaDQcLhsEKjiIiIyBKU7Ufx2pFq+XZvcxDfHDw6O0T5aBsbj8DmH8H33H8EMuM7QOWqUhhLfhyHZVkkEglisRj9/f24rks8Hr+kFMC2bQzDYOvWrZf87BNPPIHneZf9JTZNk76+vqLNfBweHs593dHRkQu2FzfAMQyDYDBIV1fX68KliIiIiCwdtm2TTCZxXbdg87fvWd3B0JE4M9XwsZ7f4DuPfgqAVQdfxtnssKMuyAOjvew9u4f7m/I/V1JWtiUfHLOy5w8vDpBZ2WA4n7ryYgfGrIvXahgGfr8/Fxiz5zvj8TixWIxYLEYoFFrUUloRERERmb+urq6CV4dZhk3F8zBTDT+qeZybNtmcP5pk80HYzW6iFdFLylXbKsyCrkdWFl86nU4XexFvRDwex3EchoeHr1kWYNs227dvz424WAp8Pl/ua8Mwcucse3p6cn/pJJNJOjs7LwmU+QyPPp8vrw13urq6ih7IRURERJazX/u+n++XOaTL4PfqP82//9PvYYzB3/5GI99df4Qvj8d4YLSXT7UMaNfxGi5+P54Ptm2TSCTyes2lpGSD42tdLjwuNBTlY7bjlcLUa/9HjUajl31ddlRINjyOjIzkLejl+5elr69v0c+KioiIiKwUD4z28uB4hDUvw2wVfHLd/823HvodNr4A+98Fv3BflPfN2txzrJ0tVRYPrR8p9pKXNAXH61MyparXUoidxCudj7we27dvv+ZrbNu+4k6dZVn09fXlAmwymczrSI7l/j+4iIiIyHKTLoM7T5l8w/kdXjoDGwHThT3sIVQRypWrjs95NJWpueKV5HP/LN8hdClaNsGxELKNeRZiPoeju7q6rvr9UCiUC47Dw8P09KjsQERERGSl2Va9nQeJQHU1Y+dephGonm5gsnaC1pfgi14Sz/DYVmNzYMZhaDLOzoZQsZcty4SC41UYhrEoZyKzLZyvto5gMEg8Hs+VrIqIiIjIyrKtxgbgXEMlY5UTNAJtG5oZn5igbiqz6xi34uys7+LB8QhDU/sUHCVvlvQcx3xzHIfOzk4CgQAtLS34fL7co729nUAgQCwWW5S1XLwTOZ8w6DhOAVcjIiIiIktdU5nBthqbCd8EU7VQV7+WiQvHKFu1FsgEx2GG2VJl0VZhsn86WdT1yvKyYoJjLBYjEAgQj8dJJpOvC2uu65JMJunu7sbv9xc8qF1cnrp79+6rvtZxnNz4kXyebxQRERGR0rKzPvMe8kwjjNecB6DtBj8A7a6POJmRb9tqbMbnPA7MaPNB8mPFBMf+/n48z8uVfQ4MDDAyMkI6nSaRSNDT05MLZY7j0N/fX9D1XNwM51olqBevZT7NdkRERESkeBzHKdgmxI66zBGn2YYaXq7KvH+cm57kTAOkqyrx8HBw2Fadec+oXUfJlxURHOPxOK7rYpomqVSKwcHBS4Kibdu5IDkyMnLJzxSKaZq585Ou614ycuNi3d3dxOOZT44W68yliIiIiLwxruvi9/vp7u4uyPWbygx2NoSYLJ9mtAVqa1Zx6KVHePbGcobfeQGAOPHcecj954YLsg5ZeVZEcMx+4jMwMIBhXL0lsWVZua6lhQyOAIODg5fscvr9/tz4D9d16ezszJ25NAyDRCJxzfWLiIiISPGYpollWZccNcq3HbUdAJyth/LmFgBmD1ewdjQTHPexj7YKU+ccJa9WRHDMhq1rnSWETKOai3f4Cr2uRCKRK1vN7jxmm/Vk15EdC6LzjSIiIiJLX0dHJtgtdB74leyoC9JWYTJZD07Dczz5NlhtrqJuCtadbcLBwcXVOUfJqxURHLPBLNv85nJnCh3HIRKJ4Pf7c2WtixHUDMMgGo0yOjrKwMAAtm3nHj09PbnyWYVGERERkdKQHbW2b9++gt0jW4o6WQsXKuDE6he5oWYja58fB14tV331nOPQZLxg65CVw5dOp9PFXsRi6O3tJRKJXPKcZVkYhoHruq8rJRgcHLzmfMVS5/P5sG2bRCJR7KWIiIiILCvt7e24rkuh3moPTcb5uvdFHk39PZMNUHUOgpM7+Nf0EMkABAnyudkB7jnWzpYqi4fWjxRkHZKxEt5Xr4gdR8icbxwYGLjkOcdxSCaTl4RG27YZGRlZ9qFRRERERAon29Awe/Qo33bUBRm48YtUzULD+RpmquHOt/wCzePQNFVFnDgNFQZbqiwOzDgcnXULsg5ZOVZMcATo6ekhnU6TSqVIJBKve2RHc6gsVEREREQWInvOcXi4sF1N71kT5ML5aQCe5AeUe6tYc3wGgCTJXCMdNcmRhVpRwTErOwrjtQ8RERERkXwo9I5jltW8ncrzma8TY3FSXyuj9UVo9jLdVbNzH4emCnfeUlaGFRkcRUREREQKyTAMgsEgruvmRsMVwj1rgpSlYU16DcdnXN7/vnfz/m/Ctv2ZHcctVRZNZYZ2HGXBlk1wzHZMDQQCuUdvb+9lO6iKiIiIiBTa9u2ZrqaFGssB0Fpj0lpjcnbqFQCM+1oBuO1pcHFxcNhRF2R8zlN3VVmQZREcOzs7CQQCxGIxkslk7hGJROjs7KSlpYXOzk4FSBERERFZNIsxlgMyu47ZctWHz36d+nW3UD6bKVfdw54fn3M8V9jzlrK8lXxwjEQiudpxy7Jy5xVf2+AmHo/j9/sL+omPiIiIiEiWaZoMDg4yODhY0PtYzdspS8PN5bdwfMal5ba7qZuGzQdfnef46sxH7TjKQpR0cPQ8j/7+fgCi0SgjIyO5DqkjIyOkUil6enowDAMA13UJBAKvm9koIiIiIlIIwWAw9160UE7VnOXltTA1namuS62aAmDzQR8uLs+XuWyrsTk662osh7xhJR0cI5EInufR19dHKBR63fdN02RgYIBUKnXJXMZYLLZ4ixQRERERKaAnzn+PyXo4nT7Ftqrt+E6fZiIN5uE0ALvZnStX1a6jvFElHRyzrjVKwzAMBgcH6evrA2DPnj2LsCoRERERkcLbVp1pwjNdC+uPXuDo899koqYRgLc9XUGcuMZyyIIti+A436Y34XAYy7IK3hZZRERERGSxZEPhdA2M12a65Nz41rcAcPuPKvDwOFTh0lZhaiyHvGElHRxN0wSgt7d33uGxoyOzTa8OqyIiIiKyXOyoCzJbCU7VAeqqDJ73vs+FMmg7NA3APvblmuQoPMobUdLBMXvY2HVd/H7/vHYRs+2QC31IWURERERksWTLVU9XnsFs3QbA7Lo11E1lxnIkSbKlcisAB2ZUeSfXr6SDo2EYuaY32fDY29t7xa6pkUgEx3EuO65DRERERKRUZctVp2rB19gMgO/VjZJ3OjU4ONxUmylf1TxHeSNKOjgCDAwMXNIcJxKJ0N7ejt/vJxKJ4LourusSi8UuGd0hIiIiIrJYsjPFs/PH862twuTG8o1M18JTZZly1ZPnjgPQmsqUqx6rfBnQjqO8MSUfHA3DIJFIMDAwcMnzjuPQ29tLe3s77e3tdHd350Z3ZM9GioiIiIgsFsdxcsemCuG++p8D4Kn0k9ze9kHOz00yVQMbXsp8P3vOUfMc5Y0o+eCY1dPTQyqVIhqNEgqFrhgO+/v7CQQChMNhdVYVERERkUWRPV6VTCYLdo+d9V1Aplz1ZN0kx26EV26sZ64M6i7UkCSZOwupXUe5XssmOEKmy2ooFCIajZJKpRgZGaGvr+915xmTyST9/f34/X5aWlro7u4mFotd8WykiIiIiMhCBYPBgo6F21JlcYOvlcl6eL7qKCdvgLGNdTxzK2x6xcDD43xtBaB5jnL9llVwfC3LsgiHw4yMjJBKpRgYGMh92pPleR6xWIzu7m7a29sVHkVERESkILZvz+z2FXLX8T3191E5W8ZL518A4ET5ScyG2yk/dgKA49WnAI3kkOu3rIPjxUzTpKenh8HBQUZHR3Mlra8dy6ExHSIiIiJSCNkNjEKec/zM6igfmf5Zps68RMNcPRON0N54B+tfzHw/SZIddUGOzroqV5XrsmKC48UMw8iVtI6OjpJIJOjp6cnNhRQRERERyTfTNDFNk2Qyied5BbuP1ZzZ2XxT7W0AeOkqKmfBOFmNg8Om2tsB7TrK9VmywdHv9xMOhwv6S5Vl2zYDAwMMDg4W/F4iIiIisnItRpOce9Zk7nHh3GTmnzemAVj33AwAp2umAM1zlOuzJIOj4zi4rptrYBOLxYq9JBERERGRBcuecyxkuWprjUlrjckx7ykayw0SY3HWn7+TjeOZAPkvFd+grcJkaLIwMyVlefKl0+l0sRdxOdngmA2Ntm3T19eHbdtFXddy4vP5ME2Trq6uq74u261WRERERBYu+x4slUoV7B6ff66XvUcj3HrjvTw6+S266z9B4unP8fiOtbxQe5JfH93J0Phe/nLtIDvqgte+oFyVz+fDtm0SiUSxl1IwFcVewJWYpkk0GqWrq4v+/n6SySTJZJJgMMjAwMAV5zTK9ckG9KuxbVvBUURERCRPgsEg8Xgc13UL9p7Wat7O3qMRGufqAXip4hTls3DzoVleuB3K6ptgPFOuquB4dT6fr9hLWBKWbHDMsm0b27aJx+P09vYSj8eJx+P09fXR09OjZjYLZFkWAwMDV32N/huLiIiI5E9HR0fB72EZNgBHvSdprDdIeIP8h6fg2alRuB3+vfIxQA1y5mM+BZorIVwu2VLVKwmHw+zevRvP8zAMIxcg5fqthC11ERERkZXq40+8m8cnH+Ge1p386/he7n4Eyubg73+pmZOrx3jfidt59tyTPLIhRVuFWezllrSV8L56STbHuZpwOEwqlaKnpwfP8+jt7aW9vZ14XId7RURERESyvml8n5fWQTPNNJYbjDVDwwQ0vjgNwMbGLYB2HWV+Si44QqZ0cmBggFQqRTAYxHVdOjs7CQQCOI4GmYqIiIiIbK9+P3Pl8Oy5p/ipYxYVFzI7ju0vngPgfE3m1NrQVOE6vMryUZLBMcs0TQYHB0kkEliWRTKZxO/3093djeu6xV6eiIiIiEjRfKipG4An5kbYvC4zBmS6Bja+kPn+w+X/RlOZoR1HmZeSDo5Ztm0zMjJCNBrFNE1isRh+v59wOIznecVenoiIiIjIost2S52omqG+pQ2AqVpoGodbJ9pwcbmt7icYn/M4MKOqPbm6ZREcs0KhECMjI/T19QHQ39+P3+/PzYIUEREREVlJtpbdyWwlPJV+iroqg+laHw0T0Ppipj/mdF2mG6iCo1zLsgqOkDn/GA6HGRkZIRQK4bou3d3d+P1+kslksZcnIiIiIrJo7mvcCcDXz+7lzo1B5srSXCgH46ljADxd/RwAB84/UbQ1SmlYdsExyzRNotEoIyMj2LaN4zgEAgECgYDOP4qIiIjIkuA4TkGnA2yv+wAAR33HMNe+E4DJOlj7CqwfXcuzZYeYLdeOo1zbsg2OWZZlkUgkSCQSmKZJMpmkvb2d3t5enX8UERERkaIKBAJ0d3cX7Ppbqiyq09VM14BXOQnAuerMOcebD9YB0Ni0QQ1y5JqWfXDMsm2bVCrFwMAAhmEQiURob28nHA4Xe2kiIiIiskLZto3neQUdKXd3VYC5cvj27DfZuMri9Cqom4Qt1ANwqm4K0DxHuboVExyzenp6SKVS9PX14Xke/f39tLe3F7REQERERETkcrZvz4zJKGQvjg82fQSAx2b+nec3zPDMrfD87Y14xw9wx9ztnKw4zZxP5apydSsuOMKPG+ikUimCwSCu69LZ2anzjyIiIiKyqILBzMiMffv2Fewe2bEcJ6vHuaPmXQCM3VDJhQp465QJZOY77j83XLA1SOlbkcExyzRNBgcHSSQSuQY6hmEUe1kiIiIiskKYppnrw1EoTWUGHyn7RdaehLW1NwHwStU4ALNPnQAgXVOtUlW5qhUdHLNs28410FFwFBEREZHFlN11LOTRqd61n6Z6Bp4Y/za3ld3OdOUs56rgxPcfAyBdW8P4nKdyVbkiBceLWJZV7CWIiIiIyAqTPec4PFy4UtHWGpPWGhPHS/LB1vsBOO9rYM0GuGXiTZyqHGPOB0OT6vshl6fgKCIiIiJSRLZtA4XdcQSwjMx91vlaAbhwQxUA7/DdBuico1xdSQRHn89HIBDIy7XC4TA+n6+gdeQiIiIiIvNlGAa2beO6bkEbNd6zugOAg2OPcmutxWj5aS6UwZpXMt+vqGvSOUe5opIIjiIiIiIiy9lijOXI7jg6XpJ3NGS+nqyDCy+4AMzWVACa5yiXVzLBMZlM4vP5Fvzo7+8v9h9FREREROQSizGWo6HCYFODxaEJh2317wWguryOl196ktsv/Hieo4KjXE7JBEcRERERkeXKsiwGBweJRqOFvc+ru46+87PUpGs4WT9JwwR4/5oZy6FzjnIlJREcQ6FQsZcgIiIiIlJQwWCw4KPhrObtvLIawmc+yV1VNuerYM4HF54+Ceico1xZSQTHaDTK4OAgoVDokl8mwzAIhUIMDg6STqfn9ejr6yvin0REREREpHjuWRNkpgoOlT3HT63t4q0HYNVpuHfTmwGdc5QrK4ngCJlPYKLRKKOjo7kQCRCLxejs7KSlpYXu7u5rtjE2TRPbtgv+aY6IiIiIyFLURhsAr6RPUj0D52qgbO4lLCxOVpxmtlzBUV6vZILjxRYSIkOhEIlEAsuyFnnVIiIiIiLF9+7aHQB8Y/prNFSuYroWql4Z56en3gdkOq3qnKO8VkkGx4vlaydSRERERGQl6DRCADwx+31uXXsPAFXn4K2j6wCYq6vRjqO8TskHx4vNN0QWcj6OiIiIiMhSZjW+m5qZcl4ufwV/eycAZXPwpb/9HKvGVjFWM62xHPI6yyo4XsyyLLZu3Ypt27nnPM8jFosVdD6OiIiIiMhS9+ayWwF4rPYpIHPOsab5COVfLQdeLVdVcJSLLKvg6LoukUgEv99Pe3s7vb29rytRzQZKEREREZGlKBKJEAgE8DyvYPe4u/a9AHxz5uusrd3ITDU0XwB7/J2AzjnK65V8cLxcWHQc55LXBINBBgYGSKVSjIyMaC6kiIiIiCxZhw8fJplMFvR41X++4QHKLsBBfsSWGzNNcarOw0f/w/sxMJipKdOOo1yiotgLeCNc1yUej7Nnz57XhcSsYDBIR0fHogxSFRERERHJl46ODiKRCMPDwwSDwYLco6HCYN35VbxYc5oLG9ZzbAp86+HGU8PYt9jEy+K5sRzbauyCrEFKS8nsODqOQ29v7xV3Fg3DIBQKMTg4SDqdzjXHeW1oDIfD+Hw+NcgRERERkSUp26Oj0O9Xt1a+A4DvVD7GRAO8vA6eOJ1gK5ljXdM1OucoP1YSO47hcJj+/v7Lfs+yLGzbpqOjI/fc1X7JDh8+nO/liYiIiIjklWVZOI6D53kFq577aMsn+MapIabOe7SX3cIBnuNU2RjOX/8b/OqrwfGszjlKRkkExyuFRsjsRDqOQyQSWcQViYiIiIgUjm3bufe5F08JyKe7W36azQcMxnmGn1vzmxyY/iOma+CFb3wDfhVmayrYfypZkHtL6SmJ4AhgmiZdXV0Lvs7w8LDKVC/ied41/3sYhoFlWYuzIBERERHJTQFIJpMFC44AlmHzyCtx3rPhF/jr1J8zVTfOmtvg7LNtHH3zUeZ8cGDGYUuV3guudCUVHMPh8IKvEw6HFRwv4jgOgUDgqq+xbZtEIrFIKxIRERGRbFgcHi5sqajVvJ1HXonjeEl+ovFeEnNxbnhXI+98804iRHLnHFdycPT5fMVewpJQEsHRtu287XiZpolt2+q0+qr57OSaprk4ixERERERIPP+yzCMK04QyJd71gT5/HO9PHJqH++8sYPEWJzRijN0nHsrVGfOOR74/9u7++A28vvO8x9IHIqSOFLLHu+MbSVqZsc7s3IctuK5tXLnHBq7Wa8dJxGYnVpfHF8I5Lx7uYq3CF55K6mU1wQuVZfbqrsQqqu6W1+2zNYf49uqSy2h8uM5idH0ThLFmSybG0fx5CZmayyPNZ4Hth5GD5RE3B9QtwCRBCkS3Xh6v6ZURYJN9I8DEOwPvr/f93d7KdYxdLtarbblMYMQLnsiOLaz2pXL5djHsUG7KrkAAABoL9u2ValU5HlebMuGnhgx9cSIKS9w9et/77Qk6cZ+6chrd6Sj94LjW/GGV/SGntmOAwAAABgk6XRakhKpOkrSq299V4/tfUI390sXL31bY8GYbg/X1zgCBEcAAACgC1mWlcjyKuvwvYB6eUHvGzohSar+zee1XFmWJN3cx36O6OLgGPc7KxvxfT/xcwIAAAAbsW1bKysrsS+zsgxbd/dIX7z6Bf30/n8sSbpx6JZ0ry9P2CAHg60rg2OlUtGJEyeUz+cTO2c+n9eJEyc6ElgBAACAThkdMqQnntCLR36oq4dSGrotpdak3/3v/rWke8HxVrzdXdH9ujI4hl2kHMfRxMRErJVA3/c1MTEhx3FkmiYdRAEAADBw/uHIz0qS/vBqRT99/u16+4q0//bfyJKlWyPSn9xyOztAdFxXBkfLslStVmWapiqVisbGxpTP59saIH3fVz6f19jYmCqVSnROtukAAADAoJkwcpKk/3T3z/XjT/yMJOnFi38kW7YkpquiS4OjVA+Pi4uLKhQKkiTHcTQ2NqaJiQlVKpUd32+lUtHExITGxsbkOI4kqVAoEBoBAAAwsKxHf1qHbo3orT3XNfb3PyJJunbzDaVVb5xz/QDBcdB19T6OhmFodnZWp06dUqlUkuu6qlQqqlQq0bTSdDotwzBkWVZT56kgCOR5njzPUxAEWlhYiD4O2bat2dnZ2PbFAQAAAHrF+4c+oKoW9I2hb2r49h6tDq/pf/7Ib0pfvVdxfIN1joOsq4NjyLZt2bYt13WjAOn7vnzfl+u6O7q/mZkZ2bbd9rECAAAAvegXHv24qtcX9I0bX9F/NfwOvVZ7Ve/N3NCfV6S7Wen5226nh4gO6tqpqhuxbVvValXValXZbPahppYahqFsNht9P6ERAAAAvaRx5lwcJt7xLzR0W3pl7yUd/Ts/KUk6+I6ryh7JSmK66qDriYrjg8IKpKRoOurCwsK65jnhVNZwGisAAADQi8bGxmQYhhYXF2M9z5O1v6vv6G+1OnZUelW6WbusqfSUKqpodbgeHE+O2LGOAd2pJ4NjozAUxr0xKgAAANAphmFE/TribOhoH/xZfef2/64/3vfneuy2dOXQmo5dNqTDrHMcdD01VRUAAAAYROFsu53093gYubf9j9pzV/p27S/10tOP6G+ekr7s/x+yZevuEPs5DjKCIwAAANDl0un6thgLC/FW/J4YMfX2O4d1Z89dvevQU5Kk//j6F/XDr/9QEvs5DjKCIwAAANDlkqo4SlJ27z/VO1+Rxof/C0nSa0Ov6/z/eV6SonWOGDwDFxwdx1Emk5HneZ0eCgAAALAt4b7lD+5LHoePPf4vtW9Vunp3RZJ05eAd/eLTpyTdqzjeYp3jIBq44Bju/Rj3LxwAAADQTklVHZ8ctTQ6ZMgLXL1bR3XnEelThf9GpkzdYqrqwOr5rqqhYrG4rTnfD27ZAQAAAPSCdDqtcrmshYUFZbPZWM/1wcey+tolR39v6L36/p2L+oPX/72yj2dVVlnX97MtxyDq+eDoeZ4mJiYIhAAAAOhrSa5ztA6n9bVLjg7U9kuSzt9aVE45lVWOGuQQHAdLz09VnZ6eJjQCAACg7yW5zvGDj9UrmpfeekmS9Ipe0Y+9/GOSpOsHWOc4iHq64hiuV5SkmZmZ6F2YVs6cOSPHcWIdFwAAABAH27bleZ5c1411uurokCHLsOUFro4MHdLK0BX9yeJXpO9Kd23p+dtubOdGd+rp4BgGwJmZGRWLxW19TxKlfQAAACAOp06dUhAEMgwj9nN98O2n5AWu3hbs1cpj0suHvyqdlWSL6aoDqOenqkraVqUxVCwWVavVHup7AAAAgG5g27bm5uaSuZY9OKofvkO6fqhea1q+9W19+V99WdK96ap0Vx0oPV1xBAAAABCP4wef0fWDkp96TU//tbT3+op+fORdkqTVYencVdY5DpKerjiapimpvm4RAAAAQPscH7a0r7ZPt/ZJ73hdGrpb01/8zb+XLVt3hyTv7n/q9BCRoJ4OjtlsVoZhqFKpbPt7woY6cXeiAgAAAHqdPfJPtLZXeu3d+yRJf3Xx/1VaaUnSm0NXdPGO38HRIUk9HRwNw1A2m1UQBMrn89v6HsdxlMlk5HlezKMDAAAAets/PVS/xvbfeUuS9PLVv9LX/pevSao3yDm/yjX1oOj5NY7j4+OS6oEwCILo880sLDAXGwAAANiOsGvqW6PSI6vS6vBt/dK7f05/pj/T6rB0/qanDx2Ib1sQdI+eDo6O46hUKkWfVyqVh5q2CgAAAGBzh/YYOpYa04V9y7p2QNp3Rzryjld05NoRrYyu6NxlijKDoqenqvq+z1pFAAAADCTXdRMpmkwc+hVJ0quP1z+/sLKgU6OnJEnfSr0Q+/nRHXq64hianZ2VZVnbOvbMmTNyHCfeAQEAAAAxCoJAmUxGlmUpm413quiHDmRVvlzSDx+XfvT70ivXX1Ja/0qOHL05fE0X7/g6OmTGOgZ0Xl8ER8uytr0Jquu6sY4FAAAAiJthGLIsS57nKQgCGYYR27mOD1varwO6fvC6ro5Kbwyv6pOvPSG9Q7p+QDp309Wzo7nYzo/u0NPBMQyL4X6OcX1PPwuCYMswHb4wAQAAoHvYti3P8+S6buxVx58ayegbN7+sF5+SDlyXrrz+XR24uV/Xf+SG3Gt/oGeVi/X8neL7vnzf7/QwukLPB8ftVpYYdssAACAASURBVBp38z39zPM8ZTKZlsfYtq1qtZrQiAAAALAd6XRa5XJZnufFHhx/Yt8zeuHagvauXtPqPun8m3+sg38xquufuKE/WPuDWM/dSQ824xxkPR0csXumaWpycnLLYwAAANBdwmJIEtvNFYyinr5paub1vG7tlf769n/Wzx/6eX1en9cPhl/r23WO2y04DUK4TNVqtVqnB5GksNxsWVasc8F7QSqVopoIAADQw8bGxuT7vpK4pL92J9CHvnVE1w9Kn3jblD75I0Ud0RE9sip9YXVuoNc5DsJ1dU9vx7ETjuMok8nI87xODwUAAADYlbAilkQDyNEhQ39/6H2SpD9a+X0ZMvSetSd1e1hyV/t3uirqemKqqu/7bdtCI4lSPgAAAJCEdDotx3Hkum4ifTz+4WP/TIvBX+oHe78vSfronp9TWWUt3P1G7OdGZ/VEcJyYmKBCCAAAADwgyXWOkvTLP/YZnf6zf63VvdJ/vPwlvfv2u6XHpO89cqlv1zmiriemqhIaAQAAgPVM05RpmonuVX5obVSS9B9e/bcy/HrPkNXh+n6O6F89UXGUttf9czsWFhYS/cUCAAAA4mTbdqLTVf/B/v9aX9FX9MI1V7PPfEn//Mo/1+oB6esrZwe6QU6/66ngWCwWd30/xWKR4AgAAIC+MTk5qcnJycT2Kv+Zxz+uL7/6Fb2lt3Tppi/7kC1Xrr55m3WO/awnguPMzEzb9hIMf6HYmxAAAAD9IKnAKEm/f83Rp1fzOjgkpe5KX3r180ofS8uVqzeHruj8qqfjw1Zi40FyeiI4tqPSGLJtO9FfLgAAAKBfhKEwVZPedVF63vttZSfnJUk3R+rrHAmO/aknmuMAAAAA6Lzjw5aODpm6dkg6cL1+28GX35R0LzjeYuu7fkVwBAAAALBtJ0dsSdJKvaGqzv/gD7X/O/t1e1h6frXauYEhVgRHAAAAANt2cl9aknTt0frnf33J1djLY5Kk1x+5rPOrbKXXjwiOAAAAALYtrDi+NSrdTUk3Ll/SJ9/zSUn31zmi/xAcAQAAAGzb0SGzvs7xUal2cL9StZqe0A1JrHPsZwRHAAAAoA/4vq98Pi/HcWI/V1h1fPXRemD8y+UvypLFOsc+RnAEAAAA+kAQBHIcRwsL8Vf8wnWObx2of/69NzzZsiVJb+5lnWM/IjgCAAAAfcCy6vsnuq4b+7nCvRqDI9LL5l7Vbt2U/FuSWOfYrwiOAAAAQJ+wbVu+78v3/VjPc3zY0gEd1I0D0pvGXd3YL6394K8lSavD0tdvnI31/EgewREAAADoE+l0fQppElXHjx/4pN72Rv3ja6PSG294Gn5rWLf2pag49iGCIwAAANAnbNuWJC0tLcV+rs+8o6xjK/XNHFdHhxUokDXyE1rbW9OdvUxX7TcERwAAAKBPhMExiYqjJB0/8H5J0trhR3XtUentl4ck1aerEhz7C8ERAAAA6COWZcnzPAVBEPu5xg5bGrkhXb77htZS0u03X5VUb5DDOsf+QnAEAAAA+kiSVcexQ+MaXq1//GOHLN24tCxJWt27V+dXPV1Ziz+8IhkERwAAAKCPhA1yPC/+vRT/zgFTj9yuf/zogcc1dFc68tqobh28q7UU01X7yVCnB4C6zdomG4YR7ckDAAAAbCWsOC4sLMR+rh9/zI4qjrdS9Q/eeX1UK7pW38/x1oI+dCAb+zgQP4JjhzmOo9OnT7d8R8g0TWWzWc3OziY4MgAAAPQiwzBkmmbsezmGPvJETp+Xo4t3lvXEiKnXr9bPe/2AdO6qm8gYED+CYwcFQaDp6WkFQSDDMJTL5XT48OGmY86cOSPf91UulzU+Pq5cLteZwQIAAKBnLC8vJ3aun3nvlL528ZxeufodnTz8cV161ZckrY0M6/wbni7e8XV0yExsPIgHwbGDyuVy1O1qdnZ2w1BYKBR05MgRSVKpVCI4AgAAoKt8+o28zu/9jgxJbx9+p4ZvSWPXn9DygUvRfo7PjuY6PUzsEs1xOqhx3nk2u/Hcb8Mwonnqvu8nssgZAAAA2K7jw/V+HL/7ni/qHx34Od0Zkg68eVOSonWO6H0Exy5hGMa2jktiPx4AAABgu07uq3dx/c+rL+jpJ2z9xNttDb1ev2ZdHaazar8gOAIAAADYsZMjtiTp/O0lSdIH335Ko9fqX7t5Q7p4x9fFO35nBoe2ITh2kGma0ceO42x4TBAE0fRUtuYAAABAtzk6ZOrQHiOqLFqGraG70qFb+3X78foxVB17H8Gxg2ZmZqIpqqVSSZVKpenrvu9rYmIimp7aeDwAAADQLU6O2LqyFuj8qqcnRy09MWLqkas3JEmrj9yvRqJ3ERw7yDRNTU1NSbofElOpVPRvbGxMrutKqm/kWigUOjhaAAAAYGPHHxmXJJ1frc+Usww7mq66Onz/dvQutuPoIM/zdPr06ehz0zSbpq82TlN1XVeO47R9Ow7f91UsFttyX7ZtRx1gAQAA0HnT09Mql8taWVmJdebayRFbulzSuVsLenY0pw8/Pqk9a4/rN/RvNDxySOfecGM79074vr/pUjFsjODYQmNw26kHw2DjfTdOQ52dnd2wouj7vk6cOKEgCJTP52VZVlvXOfq+r1Kp1Lb7IzgCAAB0H9d1N93+rR3CBjmN6xxNWfoN/Ru9cfWq3ql61THcuqPT2n0NPAgIji14nqdMJrOr+5iZmdmwolcul+X7vqTW01BN09Ts7Kzy+bwk6fTp05qbm9vVmBpZlqXZ2dm23NdGARkAAACdk06nVS6X5XlerMFRqofHczdd/fLf/pSe+7t/KkOGnrrxlF5854tae7m7gqNlWapWq227v91mhl5AcGzBNE3NzMzs6j42q8A1TlHdKgjmcjmdOXNGrutGYbNdDMOgSggAANCnwuu8hYWF2M91cl9a5266Wrx1Ti9cc/XMqK2P7P+IXtSLujnSXQ1yuAZ+eATHFkzTbNv6vweFU1TD82wlnU5HjXIAAACA7TAMQ6ZpJnId+exoTj+8+T196fLn9cqqL0lKK62yyro5Ip17K/4xID50VQUAAAD6WFhZizs8Hh0y9Yuj/6321KQXb9ari7bq59b+/Tq/6unKWrD5HaCrERx7xOXLlzs9BAAAAPSg8fH6Vhm7bfq4HU/tr69hfPFG/VyGDFmydPWRG1pL3W+eg95DcOyQxs6oW737EwQB7YIBAACwI0muc3x0r6F3DZt64Zp7//z3qo7XD0jnbsU/BsSD4NghU1NT0cdbtQIul8vRmshTp07FOi4AAAD0l7BgkUTFUVpfdTyl+vXrzRHpK1d+P5ExoP0Ijh2Sy+WiX2LXdZXJZNZ1TA2CQMVisSlYxt1GGQAAAP3Htm35vt/2Dv0beWqkPjU2DI5hxfH23T26pIu6eCf+MaD9CI4dVK1WlcvlJNXD49jYmDKZTPTvxIkTUWg0TVPVapW9EgEAAPDQ0um0pGSqjs+M2pIUdVaVJEuWVg+vSWKdY68iOHaQYRiam5vT8vKyCoWCDMOQ67rRP9/3lc1mVa1Wtby8zF4zAAAA2BHbtmXbtgzDiP1c4VTVF966v57RUv22m/tY59ir2MexC5imqdnZWc3OznZ6KAAAAOhDYXBMwuVaoLX9I/qLO9+KbhtXffrq6rB07oabyDjQXlQcAQAAALTNlbVAV/bd1K29d3T1br3BY1hxPJh6hy7e8XV+NZlGPWgfgiMAAACAtjk+XA+Jb9v/Lj26tz41NmyQ88rV1ySxzrEXERwBAAAAtNXJEVsX7/i6shZEt1mytPaj9Y9Z59h7CI4AAAAA2iqsOjZOSQ2nq+7ZP0rFsQcRHAEAAAC01fFH6s1wGgNiWvUtQZ4YfVJX1gLWOfYYgiMAAACAtjo6ZEqSLt69EN2WVVaS9IN9b0qSvn69kvi4sHMERwAAAGCABEEg3/djPcfJEVtS81RVQ4YsWfL3vqy1FOscew3BEQAAABgQruvqyJEjchwn9nMdH7bWTUcNu6u+dY3Oqr2G4AgAAAAMCNM0JUkLC/FX+8Lpqo3hMVzneP1G/XPCY+8gOAIAAAADwjRNGYYhz4u/MU3YIOdTL5+KbgsrjvvHDksiOPYSgiMAAAAwQCzLUhAECoJg64N3IVzn+P27L+vq3fq5DBmyZWvlbZdZ59hjCI4AAADAALGs+n6KcVcdjw9b+tjeX9b+m9IL19z757+3n+Ph/U9QcewhBEcAAABggIyP16eQuq4b63kO7TH04UeflSS9eON+SB1X/fyPHnxCEtNVewXBEQAAABggYcVxaWkp9nM9tb9+rhfeuj8lNaw4/u0PvieJ4NgrCI4AAADAAAmDY9x7OUrSu4ZNvWvY3HCq6g+H35DEOsdeQXAEAAAABoxt24l0VpXuVx0bp6vasqUfkfYG+6k49giCIwAAADBgwv0c417nKEnPHKzv3bhR1fEZs/41wmP3IzgCAAAAAyZskJNE1TGqON68v6YybJBT279PEsGxFxAcAQAAgAFj27ZyuVy03jFOz4zakporjrbqt10celUS6xx7wVCnBwAAAAAgWZZlaW5uLpFzXbzj65FDj2n5pq+rdwM9uteQee+/P91zTuM3HtM5uYmMBTtHxREAAABAbK6sBXptz+saHXlMr6z60e1h1dH//16XJJ1fTaZZD3aG4AgAAAAgNseH69Nh9w2PRusdJSmtemOcG2v1z1nn2N0IjgAAAABidXLE1sU7vq6sBdFtYcXxPf/ouCTWOXY71jgOON/3VSwWWx5jmqZyuVwi4wEAAED/ObkvrXM3XZ276epDB7KSFK1z/KvR83rfitGVFUfXdRPZsqQXEBwHnO/7KpVKLY8Ju24BAAAAOxFOVz2/6kXBUapXHR05+tFHf1zfvvy8zq960bHdwHXdLa+VBwXBccBZlqXZ2dmWxxiGkdBoAAAA0I/CMPjgdNRwP8dH9h2UpK4LjrlcTrZtb3lcJpOJfzAdRnAccIZhbOuXAQAAAP3JdV2ZpinTNGM7x9EhU0eHzHXTUS3VQ+JXv/kNPfF0PVg+O5qLbRwPK+7/L72E5jgAAADAgKpUKspkMnIcJ/ZzNU5XDYUNcvYcq9ez/vj6N2IfB3aG4AgAAAAMKMuqh7mFhfg7mp7cV99+48H9Gi1ZuvH0DZkrT+sHay/r4h0/9rHg4REcAQAAgAFlmqYMw5DneVsfvEthxfGzl/77ptvD6arvffIDktjPsVsRHAEAAIABZtu2giCIPTyeHLElSXfWVvXKqh/dfr9Bzqgk6fztpVjHgZ0hOAIAAAADbHy8HtySqDr+5r4ZHbihpuAYVhxfH1qRRMWxWxEcAQAAgAEWdthfWoq/0veuYVOS9MI19/757zXI+aNb39DI9w/r/KqnK2tB7GPBwyE4AgAAAAMsDI6u68Z+rqf216uLL95sDqm2bF0auaRL7mVJVB27EcERAAAAGHCWZSUyVTUMjo1TVSUprXrH1UNHHpe0vvMqOo/gCAAAAAy4cFuOJKqOz4zaevHG+i05JOnnf+0XJUnnbsW/PQgeDsERAAAAGHBJNshptc7xT1J/qqNDJlNVuxDBEQAAABhwSTbIeWqkHlIbq46GDFmy5MmTtf+/lMQ6x25DcAQAAAAGnGVZmpmZ0dTUVOznitY53r7QdHtYdbz+Wk0SwbHbEBwBAAAAqFgsRmsd4/TUfkvXDkpfuOU03R42yPm///A/SGKdY7chOAIAAABIzKN7DQ0PHdDKnua9GsMGOUeeeZvufI+KY7chOAIAAABI1AcPfkhS87YbpkxJ0t7379U/Hvvouq+jswiOAAAAABJ1/JF6g5wHg6EtWxeHLurjj/2a/te3z+nokNmB0WEjBEcAAAAAiTo5YkuSzt9u7uIaTld9ZN+onh3N6dAeI+mhYRMERwAAAACJOj5cD4gPVhzHVa9EunIlSUHQvA4SnUNwBAAAAJCoQ3sMHR0y1zXACSuOX/2rryqVSsl13fXfjI4gOAIAAACQVK/wOY6TSGAL1y9evONHt4XB8bV3vyZJWlhgS45uQXAEAAAAEMnn8yqVSrGf5+S++r6NjcFRqofHZWNZv/E7v6HJycnYx4HtITgCAAAAkCQZhiHTNBOtOD44XdWWLUn68G9+WJZlxT4ObA/BEQAAAEAkDGueF+8eigdq+yVJX7vy/zTdnla9Ehk2yEF3IDgCAAAAiIyP1zubxh0cf/rAP9Geu9Jbd6803R6uc1wQ6xu7CcERAAAAQMS2bUnS0tJS6wN36dG9ht593ZDeutZ0u3nvP1eupqenVSwWYx0HtofgCAAAACCS1FRVSXpqv6WrdwO9suo3j+Fe1bHslnX27NnYx4GtERwBAAAARJJskPPMwfp6xgeDY7jO8X3/8n0yDCP2cWBrBEcAAAAATZKqOj61v36eF665TbeHnVXf/6vvV7VajXUM2B6CIwAAAIAm6XS94hd3cHzXsClJevFm83rKcKoqnVW7B8ERAAAAQJOw4hh3g5yw4vjijfUB1ZYt/95/6DyCIwAAAIAmYWfVJBrkPDNqr1vjKN1f5/j1H349kfWWaG2o0wMAAAAA0H3m5+ejymOcoumqN7yoAindn6762wu/rYv/7KJqtVrsY8HmCI4DLgiCLd/BMQwjkRcNAAAAdI9sNpvIef7FO2dUUUX/27WS/q/989HtYYOce/lRrutGldCk+L4v3/cTPWe3IjgOOM/zlMlkWh5j2zbdrAAAABCLo0OmJOncTbfpdkOGLFny3uNpcXGxI4UMx3FUKpUSP283IjgOONM0NTk5ueUxAAAAQFyOD1s6d9PVxTt+FCSl+nRVT54CK+jIuLZb4RyEcElwHHCmaapYLHZ6GAAAABhgJ/elde6mq/OrXlNwTCstR45cufenribItu1thcdBCI50VQUAAADQUSdHbEnSuVsLTbeHDXIu6ELSQ8IDqDgCAAAAO/AwW0SYprnj5T+N57EsS4ZhNH09CIJ1t/Wa48P1gHh+tXn7jzA4nrt0TmM/NabZ2dnEmvagGcERAAAA2IGtGgw+yDAM2batU6dOKZfLbXqc7/tyHEcLCwsbhlPLsmTbtmZmZuS6riYmJjQ/P9/TgerQHkNHh8x1DXKke+scn/AkX1pYWOjpn7OXERwBAACAHZiZmZEknTlzRr7vt2w6ePbsWXmep0qlokqloiAIVCgU1h0XdrwPgnozmDAkHj58uOl+PM+T4zhRp1HP82IJVEEQqFwuyzCMDcfbTidHbP3+NUfnbrrR1FVJMmXKk6dnP/2sxt87HusYsLlUjZ00B1YqlWKrDQAAgF3KZDLRHoOtrqvC6mA4tXR5eblpiqnv+zpx4oSCIFAul9PMzMyG01uDIND09LQcx4lum5mZia3hYSqVkmVZWlxcjOX+Q5+/Utb/tDKtzx6Z1a8euh9SiyqqpJKqqnakQc52DMJ1Nc1xAAAAgATYtq3Z2VlJ98NfI8dxotA4Nze36ZpIwzA0Nzenubm5uIcsqV719Dxv6wN3Kawynr+91Hz+e+scXbmxjwGbIzgCAAAACWlc29hYMWx06tSpbd9XOFU1TuE5HqYZ0E6EDXIeXOdoypREZ9VOIzgCAAAAXSAMaPl8Xr7vb+t7trtB/W6Mj9fXFSZRdfzVQwV96EDzWs2w4ujLV7lcZg/yDiE4AgAAAF0gm83KNE0FQaCJiYltVfgmJydlGEasnUbDQLu0tLTFkbv32SOz+uyR2fVjkCVXrkqlkk6fPh37OLAewREAAABISGMlcaM1jOEayLC76tjYmKanpzet9lmWpZWVlVinrIZVzSQqjpsJp6ueyJ+QYRjbrsiifQiOAAAAQAKCIFCpVIo+D7fzaJTNZpua3vh+fXrmiRMndOTIEeXzeVUqlUTG2yipBjmbGVd9uuyv/O6vaHl5edPGQYgPwREAAACImeu6OnHiRNQQx7btpkY5jXK5nBYXF9etXwyCQI7jaGJiQmNjY4kGyKQa5Gwm3IZjSfFPl8XGCI4AAABAG7iuq1QqteG/TCYTTa/M5XKan59veV+WZalarWp5eVmzs7PrpqL6vq+JiQllMhkFQRDXjxRJskHORsIGOZ46V/UcdEOdHgAAAADQDwzDaLnWcHJyUtlsVoZhbPs+TdNUoVBQoVBQEASqVCo6e/ZsVG10XVf5fH7LILpbSTbI2YghQ6bMaC9H13VlWdZD/b/E7hAcAQAAgDYIq4RxMQxDuVxOuVxOvu8rn8/LdV1VKhUFQRBriAqnzXayKY0lS758/dq//TV97n/4nKrVaiLbkaCOqaoAAABAl9juukXTNDU/Px9VApNY71itVmMNxo2urAU6v9o8LTVskDP8D4YldW695aAiOAIAAABdoFwua2JiQuVyeVvHG4YRdWZNohKYZHXvZ39wQj/7gxPN57/XIOetJ9/S/Py8CoVCYuMBwREAAADoCmGTm4fZ4L5f1/gdH65XUhurjmGDnO8e+u5DrxXF7hEcAQAAgC7i+/7AT8M8uS8tqTk4Gvf+o7NqZxAcAQAAgC4zMTGx5dYXQRBoenpaUn3NYz8JK47nbi003W7JUqD4tx/BegRHAAAAoMsEQaBMJqNyubxu/aLneSqXy8pkMvI8L+q02k9OjtiStK5BTjhd9d+99O+UyWSUz+eTHtrAYjsOAAAAYAdSqVTT567rKpVKybbtXXUfDUOg4zianp6OqoqbHTs3N7fjc3Wz48OWzq96urIW6NCe+nrGwzosSRp6cijayxHJIDgCAAAAO7BZl9GdhplCoaClpSVNTU3JsixNTU3JdV2dPXu26TjDMJROp2Xbdl8Hp5Mjts6vejq/6kUVSFu2SirJl69CoaDDhw93dpADhOAIAAAA7EC79zQ0DEPz8/PR55ZlybKsrtp2wvd9lUolHTt2TMViMdZzHX+kvm/juZtuFBwN1SuPS1rS/Oz8Zt+KGLDGEQAAAMC2mKYpx3HWVUHjEG3JcXspui1c40iDnOQRHAEAAABsm2VZW3Z8bYfjw5YO7THWNcgxZcqVG/v50YzgCAAAAGDbwnWVSew1eXzY0sU7vi7e8aPbTJmS6lVH13VjnzKLOoIjAAAAgG0bH6+vPUyi6lg4PKPPHpmNuqpKUlrp+vnl6fTp0yqVSomMZdARHAEAAABsW1hxXFpa2uLI3Ts5YutXDxWagmNYcXTlKp2uh8ggYM1j3AiOAAAAALYt3IbE9/2OnD8Mjhd0QYVCQbVabdOtUdA+BEcAAAAAD8WyrETWOG7Eli2pPlUVySE4AgAAAHgopmlKSmad40YsWQTHhBEcAQAAADyUJBvkbCTczzEMj0EQsM4xZkOdHgA6y/M8ZTKZlsdYlqXZ2dmERgQAAIBuZ9u2SqVSIg1yNnJMxyTVg6Nf8TUxMaGZmZm2b83hOI7OnDnT1vvsVQTHARcEQcfmpwMAAKA3hZ1VO9Ugx5atkkpa0pKmrClJ0sLCQtvP4/s+18r3pGq1Wq3Tg0BnpFIp2batarXa6aEAAAAA2xYo0BEdkS1bVVVVLpdl23YUaJM2CNfVVBwBAAAA9BTj3n/hGsdCodDhEfU/giMAAACAnjOv+U4PYaAQHAEAAAD0nHA/RySD7TgAAAAA9Lx8Pq98Pt/pYfQtgiMAAACAnud5nhzH6fQw+hZTVQEAAAD0vMnJSZmmKd/3ZZpmp4fTdwiOAAAAAHpeoVCgu2qMmKoKAAAAYEc8z1Mmk2GK6AAgOAIAAADYkSAI5LqulpaWOj0UxIzgCAAAAGBHbNuWVK88dgPf91Uul+X7fqeH0ncIjgAAAAB2zDTNrgmOjuNoenq6a8bTTwiOAAAAAHbMNE0FQaAgCDo9lK6rgPYTgiMAAACAHUun05K6I6xZlqXl5WUVi8VOD6XvEBwBAAAA7Fi4Z2I3BEfDMNjDMSYERwAAAAA7Fga1CxcudHYgiBXBEQAAAMCOsa5wMBAcAQAAAOxKN3VW9TxPqVRK+Xy+00PpKwRHAAAAALvSTZ1VLcuSJLmu29mB9JmhTg8AAAAAQG9Lp9NyXVe+70fBrZPm5uY6PYS+k6rVarVODwKdkUqlZNu2qtVqp4cCAAAA9KxBuK5mqioAAAAAoCWCIwAAAACgJYIjAAAAgL7jOI4ymUynh9E3aI7TZr7vR5ug7kRj9yfLsmQYxu4HBQAAAAyYs2fPRg17dnN9jjqCY5t4nhe9o7GysvJQ3+s4js6cObNhy2DLsmTbtmZmZgiRAAAAwDaNj4/L9/2u2CKkH9BVtQ3C0Bg+KR/mf2mlUtHExET0uW3bSqfTunDhgiqVSnSfuVyu7W2FB6H7EwAAABC3QbiuZo3jLj0YGh9GEASanp6WJBmGocXFRVWrVRWLRc3NzWl5eTnaB8dxHDYxBQAAANARBMddyGQyOnHixI7L36VSSb7vS5JmZmbWbZZqGIbm5+ejz/P5/I7HCgAAAMRtYmKChjR9iuC4C6ZpyrIszc3Nybbth/5+x3Gij3O53KbnyGazkuqNd6g6AgAAoFsFQSDXdbtmXWE4nrBYg50jOO7C3NycFhcXNw19rXieF/1C2bbdsvFNOp2OPuZJDwAAgG4VzqDzPK/DI6kLt+SoVCqdHkrPIzh2SOMv04NTVB/U+HWCIwAAALrV+Pi4pO4JjuGswKWlpc4OpA+wHUeHLCwsRB83VhQ30jgNlic9AAAAulW4X2K3XLNalqVqtbqjZWVoRsWxQxrXKm7niRwe0y3zxQEAAIAHhdes3VJxlLZ3rY2tUXHskMYpp63WN4bS6XQsjXF831exWGzLfdm2zS8mAADAgLMsq6uC40Z8329qVImtERwHnO/7KpVKbbs/giMAAMBgC4Oj53lb9vLolHZfAw+CvgyOmUxm19W5Wq3WnsG0yeXLl2O5X8uyNDs725b7Cue0AwAAYHAdO3ZMkromOAZBoEwmI9M0oz3Sw7WP7TIIe1f2ZXDshifoVhpL+L7vbxm64tq/0TAMbukDvQAAE3NJREFUqoQAAABoG9u2VSqVuqZBjmEY8n1/3VIxroEfTl8Gx3ZV0OJk23YUHF3X3XIvyPDY7ayHBAAAADql2/ZylKSpqalOD6Hn9WVw7AXhHjfS1u2KG6uNjd8HAAAAdBvDMLqu2NGuZpCDjODYIY2l8a2moTZ+vRem4QIAAGCwraysdHoIaDP2cewQ0zSjdY2e5zXNuX7Q2bNnm74PAAAAAJJEcOygxrnWm+0j47puND/ctm0qjgAAAMAOVCoVpqzuAsGxgwqFgrLZrCSpVCppYmKiqfJYLBY1MTEhqT5XPGwfDAAAAODhnDlzRqVSqeVMP2yONY67MD09HVUDG7tGhfu4bGePxLm5uWiqaqVSkeu6sixrXcvgubm5rltkDAAAAPSK8fFxua6rIAg6PZSelKp12073PSSTybRsbGPb9rY3Fq1UKjpz5owqlUp0m2VZmpycVC6XiyU0plKphxojAAAAgPUG4bqaiuMutPOJkc1mo2mrAAAAANBNWOMIAAAAAGiJ4AgAAACg7TzP04kTJzQ9Pd3poTShOc7OEBwBAAAAtJ1pmvI8r6mJZKfl83mNjY217FOCjREcAQAAALSdYRgyDKOrguP4+Lgkqo47QXMcAAAAALGwLEuu68r3fZmm2enhKJvNyjAM2bbd6aH0HCqOQBsVi0WlUimmP+ChuK6rVCqlYrHY6aGgx6RSqWjvYGC7+FuFndjp36p0Oi2peyp8pmkql8t1RYjtNQRHAAAAALEIAxpvVPQ+giMAAACAWFiWJUlaWlrq8EiwWwRHAAAAALEIg2O3TFWV6tXPTCbTVU17egHBEQAAAEBsLMvqqpDm+75c11WlUun0UHoKwREAAABAbMKqY7eER8uyZFmWDMPo9FB6CttxAAAAAIjNsWPHJNWDYxgiO8myLC0uLnZ6GD2HiiMAAACA2Ni2zfYXfYCKIwAAAIDY2Lat5eXlTg8Du0TFccBdu3YtsXN5npfoHj5BEMh13a7q4tVunfgZB+FxdF23a9ZhxCXpxzFsRBAEQWLnTPpxHITXnEF4HJP+3ZD6/zVnEP5WSck/jv3+vJHifRzD52Xj/XfiNa6XEBwH3EsvvZTYuaanp5XJZBI7n+d5ymQychwnsXMmrRM/4yA8jplMRtPT04mdrxOSfhwdx0m89XnSj+MgvOYMwuOY9O+G1P+vOYPwt0pK/nHs9+eNFO/jGASBMpmMTp8+Hd3Wide4XkJwBAAAADBQTNOUYRiJV6Z7GWscAQAAAAycarVK056HQHAEAAAAMHC6YWuQXsJUVQAAAABASwRHAAAAAEBLBEcAAAAAsSsWi0qlUl21bVEmk9GRI0c6PYyeQHAEAAAAkJhu2+4iCIKuCrPdiuY4A+7WrVsql8stjxkdHdWTTz6563OFm6km1fY4fFG6cOFCYue8cOFC07nj1omfcRAeR+n+xsBJGITHMenfjVC/P45Ssj/jIDyOSf9uNJ63Xx/H8Dzh5upJGITHMenzteNxHBqqR4/nnntOhmFseXwSj+MHPvABHTt2TN/+9rej8Nj4u3Hp0iVdunQptvP3klStVqt1ehDojAMHDujGjRudHgYAAADQ8wqFgmZnZzs9jNgQHAfY888/r8985jNbHmcYBu2KAQAAMHB839/2NNakK9xJIzgCAAAAAFqiOQ4AAAAAoCWCIwAAAACgJYIjAAAAAKAlgiMAAAAAoCWCIwAAAACgJYIjAAAAAKAlgiMAAAAAoCWCIwAAAACgJYIjAAAAAKAlgiMAAAAAoCWCIwAAAACgJYIjAAAAAKAlgiMAAAAAoKWhTg8AgOR5nizL6vQwkDDXdaOPLcuSYRhtvf8gCOR53pbHmaYp0zTbem7Ez/M8BUEgSTIMg9eQAfP888/rzp07kqSXXnpJn/zkJ9t+jsbnWCu2bbf93OheXLMMrlStVqt1ehDAoAqCQJlMRp7naXFxkRfiAVCpVHTmzBlVKpV1X7MsS6dOnVKhUGhLiMxkMk3hdDMzMzMqFou7Ph/i57quTp8+Ldd1113QG4Yh27Y1MzPDa0mfCoJAn/rUpzQ/P6/r16+v+/rTTz+t3/md31E2m931uRzHUalUku/7Wx7LpeRgaLxmWV5e5g3HAUTFEeiQxhfg8HP0N8/zNDExEX2ey+V07NgxXbhwQZVKRZ7nRc+H3QY513W3DI22bcs0TaoFPcL3fU1MTESvFeEbDZJ05swZ+b4fPY8WFxfbXsFG5/3Wb/2WnnvuOUnSyMiIPvaxj8k0TT333HN66aWX9J3vfEef+MQn9Pzzz+/6zYOzZ8+2DI3hTIV0Or2r86B35PP56G+U7/sExwFExRHogPACsHEaYbVa5QK+jwVBoBMnTkQXYhtVmBsrhLutQDuOo3w+r0KhEIWLUBzTYhG/iYmJqFI9NzenXC7X9PXwMZekQqGg2dnZpIeIGLmuq0wmI0n66Ec/qi996UtNX/c8TydOnJAkve9979M3v/nNXf2ej42Nyfd9VavVptuZFj2Y8vm8HMeJPueaZUDVACSqUCjUJK37V61WOz00xCibzUaP9czMzIbHLC8v1wzDqEmq2ba9q/OFzzOeV/1hfn4+ev5ks9lNj7MsKzpucXExwREibsePH69Jqh08eLC2srKy4TGNf18KhcKOz7WystKW1yH0vmq1Gv1d4poFdFUFEnbs2DGZpqnZ2VnetR0gYaXINE0VCoUNjzFNM6oiua67rbVFmwmr2TzH+sOZM2eijycnJzc9bmpqKvp4o3W06E2e5+n8+fOSpE9/+tObVhJnZmZ0+PBh7dmzR+VyeVfnk3j9gKLpqLlcTnNzc50dDDqO4AgkrFAoaHl5uW0NUND9GqckbzVNtHFa6XYa22zGdV2ZpslzrE80PodaTQ9rvNBfWlqKc0hIUONrQavH3zAMZTIZra2tSdKO33wKzzc+Pr6j70f/ME1TKysrmpubY00jaI4DAHFrvHjbqpFE4x/mhYWFdevYtqOxWhA2yVlYWGg6Jp1Oy7Zt1qj0AN/3o+fQVm88hF8PgoCGW32k8U2AraqA4+PjUbV5pw1MwvMZhiHHcbSwsND0OmYYhtLptLLZLGECGCAERwCI2XarRVJzcNzOHoytzlepVDadrui6rkqlkgzDULVaZUpaF9tutanxmEqlsquKNbpL42O51SwC27ZVKpWi79vJm0NhSGzsAv2gSqWi6elppjACA4SpqgAQswsXLkQfbyeghcfsNDg2Vgay2azm5ua0vLysWq2mWq2m5eVlzc7ORpWpxi0e0H0aq03bmTrYeMxu1smiOzRWnLf7xkHo8uXLOzpn+NpjGIZmZmZUrVaj149araZqtRrtFdnYzRdAfyM4AkDMHuaiT9q6orCVcFpqNpvV/Py8crlcUyUzbNATbtcQbg+D7tT4BsJ2pgU2Ps8Ijr1vJ4/hbt58aqxuzs/Pq1gsrnvtsm1bc3Nz0Xkcx9H09PRDnwtAbyE4AkCfOXXqVFRpbCWXy0UdXsO1kAAGm2VZUTDcqhFPtVqN3uhq3OMPQH8iOAL3FItFpVKpXf3jwru37fbxDzfn7rRCoaD5+fltVS4bt3Zo3PIBvYtpx7h27dqOvzcMhNtpzGUYRnRcEAT8DQT6HM1xgHtM09x1h0m2Puhtu338N1u/2NjddDuSnF7Y2IXTcRyaXHShdDodPXc8z9vyefrg9i/obQ/7GAZBoJdeeknS1l2c22FqairaM3KnzXgA9AaCI3BPLpfb0dYH6B/VajWW+z18+HD08XYurB52TeRGyuVyNOVsK2GwRXd62L0ZwzWuhmHwZlYfMAxDlmXJ87xt/Z42vnGw08c/fCNpO9ttsB0HMDiYqgoAMWsMb1td+LWjWlQulzU9Pa1MJrPpdhybnRPd52GeP43HUG3sHw/T8KjxObLT50Amk4leQ7aa+kwDJmBwEBwBIGaN78hvVTFqvAjb6TSzs2fPRh9vFQo9z4suDKm4d6ew4iQ1b82wkcbQQCWofzzMFithxVnaWXB0XTd63fB9f8vXkMamOExTBfobwREAYtZ4Ae+6bssLv8bQ1441t+Fea5tprEieOnVqV+dDfBoDQKuqY+PXjh07FuOIkKTG14Lf+73f2/Q43/fluq727NnTlqnKW013D4KgqakWwRHobwRHAEhAuGdiEASb7nfmum707n2hUNj0oi/sXrhZAA0rlblcrmXFwXEclUolSfVwu1XIROdMTU1Fz4fTp09veEzjRbxhGNFWK+h9pmnqox/9qCTpC1/4wqZVwF/6pV+SJK2trUWvORvxPK9ptkEjy7KiN7ta3UcQBMpkMtHrEK8fwACoAegY27ZrkmqSatVqtdPDQcxyuVz0eGez2drKykr0tbm5uZphGDVJNcuymr72IMuyapJqhmFs+LxZXl6OzmPbdm1+fr7p6ysrK7WZmZnoGMMwaouLi237ORGP2dnZ6DGzLKvpsZ+fn6+Zphl9/cHHHL1vZWWl9thjj9Uk1fbt21f73Oc+1/S1n/zJn4we/1wut+n9zM/PN70OtTrGMIzazMxMbXl5uenry8vL0evQdl6z0B+q1SrXLAMuVavVasnFVACO40RVgcZ3fMNtEaT4unui8yYmJqLpoeHatcZ1a+Eeaq0qhUeOHImeN9VqdcPpYa7rKp/PN91veJ+Nz7vtnA/dI5/Pr1tTFgRBUwWqUCi0rBShd7muqw9/+MO6deuWJOno0aM6evSovvWtb2ltbU2S9Au/8AtNU94fFDbPkurPn83+3jiOo3w+H33e+DeqcUp0LpdjG58+5nle9HxpfK1pfD5MTk6yRn5QdDq5AoOmsdKz2T/0t2q12lR91L3K4Nzc3LbetZ+bm6tJqs3NzW157Pz8/Lpz6V6lgapUb1pcXKwVCoWoQi2pZprmhpUh9J+VlZXar//6r9eGh4ebfqcty6p98Ytf3NZ95HK5TWcsNFpeXq7Nzs42VbN1rxKZy+V4vg2AxirjZv9mZmY6PUwkhIojAAAAAKAlmuMAAAAAAFoiOAIAAAAAWiI4AgAAAABaIjgCAAAAAFoiOAIAAAAAWiI4AgAAAABaIjgCAAAAAFoiOAIAAAAAWiI4AgAAAABaIjgCAAAAAFoiOAIAAAAAWiI4AgAAAABaIjgCAAAAAFoiOAIAAAAAWiI4AgCATZXLZaVSKfm+3+mhAAA6iOAIAECDYrGoVCoV/cvn8wqCoNPD6ohKpaLp6WlJIjgCwIAjOAIA0MA0Tdm2LcuyJEmO48jzvA6PKnmVSkUTExOdHgYAoEsQHAEAaJDL5VStVjU7O9vpoXSUaZoyDEOGYXR6KACALkBwBAAA61iWpZWVlajyCgAYbARHAAAAAEBLQ50eAAAAiIfnedtq7GNZFlNSAQAtERwBANgB3/flOE7TbcViMfq4UqlETXVM01Q2m91ROAuCQJVKZVtdTXO5nEzTjD6fnp6W67pbfl+1WpVt2w89NgDA4CA4AgCwA77vq1QqNd12+fJlHTt2TKdPn14X9Kanp5XNZjU1NbWtdYOe5+n06dPrwmkrtm03BcfJyUml0+ktv6/xewAA2AjBEQCAHbAsS9VqVZ7nRXsdlsvl6OvZbFaTk5OSpNOnT8t1XTmOI9d1tbi42LL6GASBMplMNM3Utm1NTU0pCAKVSqVt76mYy+V29sMBAPAAgiMAADtgGMaG0zsty9L8/HxTFS+bzapYLEahr1wuN01rfVA+n49CYy6X09zcXNN9jY2NKQgCFQoFnTp1quncAADEga6qAAC0iWmaqlarG079LBQK0ccLCwub3ofruqpUKpLqQbAxNEr1wJrNZiVJjuPIsizZti3bttva4CYIArmuGwVYz/O2tV4SANCfqDgCANAmpmluGt62G+rCdZOGYWh+fn7DY44dOyapHu48z4ulsY3necpkMtHn4XTcWq3W9nMBALofwREAgC7RWNXLZrMdbVpjmqZmZmY6dn4AQHchOAIA0CVOnz4dfdy4drETTNNsuQ4TADBYWOMIAECXaOyW2mpqa+MaSbbSAAAkgeAIAECPCaezWpZFcAQAJILgCABAD3EcJ/p4amqqcwMBAAwUgiMAAF0inU63/HoQBE1dV8NtOQAAiBvBEQCALlEsFqOppxvtmVgqlaJ1kHNzc23dtxEAgFboqgoAQAPXdeW6ri5cuBDddubMGbmuq1wuFwU73/flOE7Tcb7vq1gsyrbtaG/F8LhG4XGS1nUunZubUyaTUalU0tmzZ6PuqgsLC1GYtG2baiMAIFGpGjv5AgAQKRaL0XTQB1Wr1SgQuq6rTCaz4XEzMzNRIGx1nCRt9GfYcZym6mIonJ46OztLtREAkCiCIwAADXzfXxfYQpZlRYEtCAJ5nrfhcaZpRpXJVsdJioLoRjzPUxAEkuqh0bKsrX8AAABiQHAEAAAAALREcxwAAAAAQEsERwAAAABASwRHAAAAAEBLBEcAAAAAQEsERwAAAABASwRHAAAAAEBLBEcAAAAAQEsERwAAAABASwRHAAAAAEBLBEcAAAAAQEsERwAAAABASwRHAAAAAEBLBEcAAAAAQEsERwAAAABASwRHAAAAAEBLBEcAAAAAQEsERwAAAABASwRHAAAAAEBLBEcAAAAAQEsERwAAAABASwRHAAAAAEBLBEcAAAAAQEv/PzLUcOeeUx+UAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {
"image/png": {
"width": 600
}
},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import Image\n",
"width = 600\n",
"Image(\"images/mass_function.png\", width=width)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}